The development of a fast imaging electron detector based on the CODACON concept

Author(s):  
James F. Pearson ◽  
George W. Fraser ◽  
Chris H. Whitford ◽  
Michele R.F. Siggel-King ◽  
Francis M. Quinn ◽  
...  
2017 ◽  
Vol 12 (03) ◽  
pp. C03047-C03047 ◽  
Author(s):  
I. Dourki ◽  
F. Westermeier ◽  
F. Schopper ◽  
R.H. Richter ◽  
L. Andricek ◽  
...  

Author(s):  
S. Kimoto ◽  
H. Hashimoto ◽  
S. Takashima ◽  
R. M. Stern ◽  
T. Ichinokawa

The most well known application of the scanning microscope to the crystals is known as Coates pattern. The contrast of this image depends on the variation of the incident angle of the beam to the crystal surface. The defect in the crystal surface causes to make contrast in normal scanning image with constant incident angle. The intensity variation of the backscattered electrons in the scanning microscopy was calculated for the defect in the crystals by Clarke and Howie. Clarke also observed the defect using a scanning microscope.This paper reports the observation of lattice defects appears in thin crystals through backscattered, secondary and transmitted electron image. As a backscattered electron detector, a p-n junction detector of 0.9 π solid angle has been prepared for JSM-50A. The gain of the detector itself is 1.2 x 104 at 50 kV and the gain of additional AC amplifier using band width 100 Hz ∼ 10 kHz is 106.


Author(s):  
T. Miyokawa ◽  
H. Kazumori ◽  
S. Nakagawa ◽  
C. Nielsen

We have developed a strongly excited objective lens with a built-in secondary electron detector to provide ultra-high resolution images with high quality at low to medium accelerating voltages. The JSM-6320F is a scanning electron microscope (FE-SEM) equipped with this lens and an incident beam divergence angle control lens (ACL).The objective lens is so strongly excited as to have peak axial Magnetic flux density near the specimen surface (Fig. 1). Since the speciien is located below the objective lens, a large speciien can be accomodated. The working distance (WD) with respect to the accelerating voltage is limited due to the magnetic saturation of the lens (Fig.2). The aberrations of this lens are much smaller than those of a conventional one. The spherical aberration coefficient (Cs) is approximately 1/20 and the chromatic aberration coefficient (Cc) is 1/10. for accelerating voltages below 5kV. At the medium range of accelerating voltages (5∼15kV). Cs is 1/10 and Cc is 1/7. Typical values are Cs-1.lmm. Cc=l. 5mm at WD=2mm. and Cs=3.lmm. Cc=2.9 mm at WD=5mm. This makes the lens ideal for taking ultra-high resolution images at low to medium accelerating voltages.


2018 ◽  
Author(s):  
Steve Wang ◽  
Jim McGinn ◽  
Peter Tvarozek ◽  
Amir Weiss

Abstract Secondary electron detector (SED) plays a vital role in a focused ion beam (FIB) system. A successful circuit edit requires a good effective detector. Novel approach is presented in this paper to improve the performance of such a detector, making circuit altering for the most advanced integrated circuit (IC) possible.


2008 ◽  
Author(s):  
Huanxin Zhang ◽  
Guangwu Zhu ◽  
Shijin Wang ◽  
Tao Jing ◽  
Yue Wang

Sign in / Sign up

Export Citation Format

Share Document