Novel Approach of Improving Secondary Electron Detector in FIB System

Author(s):  
Steve Wang ◽  
Jim McGinn ◽  
Peter Tvarozek ◽  
Amir Weiss

Abstract Secondary electron detector (SED) plays a vital role in a focused ion beam (FIB) system. A successful circuit edit requires a good effective detector. Novel approach is presented in this paper to improve the performance of such a detector, making circuit altering for the most advanced integrated circuit (IC) possible.

2005 ◽  
Vol 863 ◽  
Author(s):  
Ibon Ocana ◽  
Jon M. Molina ◽  
Diego Gonzalez ◽  
M. Reyes Elizalde ◽  
Jose M. Sanchez ◽  
...  

AbstractA new testing technique for the characterization of the mechanical behavior of the interconnect structures of integrated circuit devices is introduced in this paper. Modified crosssectional nanoindentation (MCSN) is the result of extending cross-sectional indentation (CSN) to patterned structures. As in conventional CSN, a Berkovich indenter is used to initiate fracture in the silicon substrate beneath the interconnect structure. The cracks propagate through this structure, preferentially along the weakest interfaces in the system. A FIB (Focused Ion Beam) is used for sample preparation, machining a trench parallel to the indentation surface. In this way, the crack growth can be better controlled and the problem may be modeled in two dimensions.The technique has been used to study crack propagation in patterned structures as a function of thin film composition and processing. The results obtained, in terms of crack length along each interface studied, correlate well with the fracture energy measured by four-point bending (4 PB) in blanket films of the same materials. Finite element modeling of the stress fields in the vicinity of the crack tip has been carried out to understand the crack paths observed.


Author(s):  
Valery Ray ◽  
Nicholas Antoniou ◽  
Alex Krechmer ◽  
Andrew Saxonis

Abstract Secondary electron signal is widely used in Focused Ion Beam (FIB) systems for imaging and endpointing. In the application of integrated circuit modification, technology has progressed towards smaller dimensions and higher aspect ratios. Therefore, FIB based circuit modification processes require the use of primary ion beam currents below 10 pA and Gas Assisted Etching (GAE). At low beam currents, short pixel dwell times and high aspect ratios, the level of available secondary electrons for detection has declined significantly. FIB GAE and deposition requires delivery and release of a gaseous agent near the beam scanning area, and involves insertion of a gas delivery nozzle made of conductive material and grounded for charge prevention purposes. The proximity of a grounded gas delivery nozzle to the area being milled and/or imaged creates a “shielding” effect, further lowering secondary electron signal level. The application of a small positive bias to the gas delivery nozzle provides an effective way of reducing the “shielding” effect. Depending on the geometrical arrangement of the gas delivery system and other conductive objects in the chamber, an optimized nozzle bias potential can create conditions favorable for enhanced extraction and collection of secondary electrons. The level of the secondary electron image signal, collected in an FEI Vectra 986+ system, from a grounded copper sample with the nozzle extended and biased can be enhanced as much as six times as compared to the grounded nozzle. Secondary electron intensity endpoint is improved on backside samples, however shielding of the nozzle field by the bulk silicon substrate limits the electron extraction effect from within a via. For front side edits the improvement of endpoint signal level can be dramatic. Lateral image offset induced by the electrostatic field of a biased nozzle, can be removed by software position compensation.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Romain Desplats ◽  
Timothee Dargnies ◽  
Jean-Christophe Courrege ◽  
Philippe Perdu ◽  
Jean-Louis Noullet

Abstract Focused Ion Beam (FIB) tools are widely used for Integrated Circuit (IC) debug and repair. With the increasing density of recent semiconductor devices, FIB operations are increasingly challenged, requiring access through 4 or more metal layers to reach a metal line of interest. In some cases, accessibility from the front side, through these metal layers, is so limited that backside FIB operations appear to be the most appropriate approach. The questions to be resolved before starting frontside or backside FIB operations on a device are: 1. Is it do-able, are the metal lines accessible? 2. What is the optimal positioning (e.g. accessing a metal 2 line is much faster and easier than digging down to a metal 6 line)? (for the backside) 3. What risk, time and cost are involved in FIB operations? In this paper, we will present a new approach, which allows the FIB user or designer to calculate the optimal FIB operation for debug and IC repair. It automatically selects the fastest and easiest milling and deposition FIB operations.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Author(s):  
K. N. Hooghan ◽  
K. S. Wills ◽  
P.A. Rodriguez ◽  
S.J. O’Connell

Abstract Device repair using Focused Ion Beam(FIB) systems has been in use for most of the last decade. Most of this has been done by people who have been essentially self-taught. The result has been a long learning curve to become proficient in device repair. Since a great deal of the problem is that documentation on this “art form” is found in papers from many different disciplines, this work attempts to summarize all of the available information under one title. The primary focus of FIB device repair is to ensure and maintain device integrity and subsequently retain market share while optimizing the use of the instrument, usually referred to as ‘beam time’. We describe and discuss several methods of optimizing beam time. First, beam time should be minimized while doing on chip navigation to reach the target areas. Several different approaches are discussed: dead reckoning, 3-point alignment, CAD-based navigation, and optical overlay. Second, after the repair areas are located and identified, the desired metal levels must be reached using a combination of beam currents and gas chemistries, and then filled up and strapped to make final connections. Third, cuts and cleanups must be performed as required for the final repair. We will discuss typical values of the beam currents required to maintain device integrity while concurrently optimizing repair time. Maintaining device integrity is difficult because of two potentially serious interactions of the FIB on the substrate: 1) since the beam consists of heavy metal ions (typically Gallium) the act of imaging the surface produces some physical damage; 2) the beam is positively charged and puts some charge into the substrate, making it necessary to use great care working in and around capacitors or active areas such as transistors, in order to avoid changing the threshold voltage of the devices. Strategies for minimizing potential damage and maximizing quality and throughput will be discussed.


2018 ◽  
Vol 5 (6) ◽  
pp. 1211-1218 ◽  
Author(s):  
Verner Håkonsen ◽  
Gurvinder Singh ◽  
Jianying He ◽  
Zhiliang Zhang

Focused ion beam milling of self-assembled magnetic superstructures is demonstrated as a novel approach to fabricate porous materials with tunable porosity. During exposure to the ion beam, nanoparticles in the superstructure are subjected to combined milling and melting, thus merging together into a porous network.


2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.


1998 ◽  
Vol 4 (S2) ◽  
pp. 492-493 ◽  
Author(s):  
M.W. Phaneuf ◽  
J. Li ◽  
T. Malis

Focused Ion Beam or FIB systems have been used in integrated circuit production for some time. The ability to combine rapid, precision focused ion beam sputtering or gas-assisted ion etching with focused ion beam deposition allows for rapid-prototyping of circuit modifications and failure analysis of defects even if they are buried deep within the chip's architecture. Inevitably, creative TEM researchers reasoned that a FIB could be used to produce site specific parallel-sided, electron transparent regions, thus bringing about the rather unique situation wherein the specimen preparation device often was worth as much as the TEM itself.More recently, FIB manufacturers have concentrated on improving the resolution and imaging characteristics of these instruments, resulting in a more general-purpose characterization tool. The Micrion 2500 FIB system used in this study is capable of 4 nm imaging resolution using either secondary electron or secondary ions, both generated by a 50 kV liquid metal gallium ion source.


2017 ◽  
Vol 23 (3) ◽  
pp. 484-490 ◽  
Author(s):  
Andrey Denisyuk ◽  
Tomáš Hrnčíř ◽  
Jozef Vincenc Oboňa ◽  
Sharang ◽  
Martin Petrenec ◽  
...  

AbstractWe report on the mitigation of curtaining artifacts during transmission electron microscopy (TEM) lamella preparation by means of a modified ion beam milling approach, which involves altering the incident angle of the Ga ions by rocking of the sample on a special stage. We applied this technique to TEM sample preparation of a state-of-the-art integrated circuit based on a 14-nm technology node. Site-specific lamellae with a thickness <15 nm were prepared by top-down Ga focused ion beam polishing through upper metal contacts. The lamellae were analyzed by means of high-resolution TEM, which showed a clear transistor structure and confirmed minimal curtaining artifacts. The results are compared with a standard inverted thinning preparation technique.


Sign in / Sign up

Export Citation Format

Share Document