scholarly journals An electron-multiplying ‘Micromegas’ grid made in silicon wafer post-processing technology

Author(s):  
M. Chefdeville ◽  
P. Colas ◽  
Y. Giomataris ◽  
H. van der Graaf ◽  
E.H.M. Heijne ◽  
...  
2014 ◽  
Vol 12 ◽  
pp. 41-47 ◽  
Author(s):  
Petr Jašek ◽  
Martin Štroner

Regarding the terrestrial laser scanning accuracy, one of the main problems is the noise in measured distance which is necessary for the spatial coordinates´ determination. In this paper the technique of using the wavelet transformation for the reduction of the noise in the laser scanning data is described. This method of filtration is made in “post processing” and due to this fact any changes in the measuring procedure in the field shouldn´t be done. The creation of the regular matrix is needed to apply image processing. This matrix then makes the range image. In the paper real and simulated efficiency tests of wavelet transformation, the final summary and advantages or disadvantages of this method are introduced.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Deepak Dwivedi ◽  
Jitendra P. Mata

Abstract Archaeomaterials suffer from various degradation such as atmospheric corrosion, under-deposit corrosion and underwater corrosion etc.; however, the extent of degradation depends on the composition of materials, environment, manufacturing process and post-processing technology such as surface treatment like carburization etc. The corrosion (degradation) phenomenon of ferrous artefacts is very complex and has received significant attention for understanding the ancient metal technology and for designing the conservation pathway of historical artefacts. This review highlights the mechanism of degradation under different environments and also paves a path for the future studies by using different analytical techniques to advance the existing knowledge.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (8) ◽  
pp. 627-631 ◽  
Author(s):  
Shawn-Yu Lin ◽  
J.G. Fleming ◽  
E. Chow

The drive toward miniature photonic devices has been hindered by our inability to tightly control and manipulate light. Moreover, photonics technologies are typically not based on silicon and, until recently, only indirectly benefited from the rapid advances being made in silicon processing technology. In the first part of this article, the successful fabrication of three-dimensional (3D) photonic crystals using silicon processing will be discussed. This advance has been made possible through the use of integrated-circuit (IC) fabrication technologies (e.g., very largescale integration, VLSI) and may enable the penetration of Si processing into photonics. In the second part, we describe the creation of 2D photonic-crystal slabs operating at the λ = 1.55 μm communications wavelength. This class of 2D photonic crystals is particularly promising for planar on-chip guiding, trapping, and switching of light.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 140
Author(s):  
Wei Jiang ◽  
Wenxiang Zhao ◽  
Tianfeng Zhou ◽  
Liang Wang ◽  
Tianyang Qiu

Percutaneous coronary intervention (PCI) with stent implantation is one of the most effective treatments for cardiovascular diseases (CVDs). However, there are still many complications after stent implantation. As a medical device with a complex structure and small size, the manufacture and post-processing technology greatly impact the mechanical and medical performances of stents. In this paper, the development history, material, manufacturing method, and post-processing technology of vascular stents are introduced. In particular, this paper focuses on the existing manufacturing technology and post-processing technology of vascular stents and the impact of these technologies on stent performance is described and discussed. Moreover, the future development of vascular stent manufacturing technology will be prospected and proposed.


Sign in / Sign up

Export Citation Format

Share Document