A detector system for a high-energy phase-contrast human computed tomography experimental device

Author(s):  
Rongqi Sun ◽  
Lian Chen ◽  
Wenbin Wei ◽  
Ge Jin
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 424
Author(s):  
Radoslaw Piotr Radzki ◽  
Marek Bienko ◽  
Dariusz Wolski ◽  
Monika Ostapiuk ◽  
Pawel Polak ◽  
...  

Our study aimed to verify the hypothesis of the existence of a programming effect of parental obesity on the growth, development and mineralization of the skeletal system in female and male rat offspring on the day of weaning. The study began with the induction of obesity in female and male rats of the parental generation, using a high-energy diet (group F). Females and males of the control group received the standard diet (group S). After 90 days of dietary-induced obesity, the diet in group F was changed into the standard. Rats from groups F and S were mated to obtain offspring which stayed with their mothers until 21 days of age. Tibia was tested using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), micro-computed tomography (µCT) and mechanical strength using the three-point bending test. Biochemical analysis of blood serum bone metabolism markers was performed. DXA analysis showed higher tibia bone mineral content (BMC) and area. pQCT measurements of cortical and trabecular tissue documented the increase of the volumetric bone mineral density and BMC of both bone compartments in offspring from the F group, while µCT of the trabecular tissue showed an increase in trabecular thickness and a decrease of its separation. Parental obesity, hence, exerts a programming influence on the development of the skeletal system of the offspring on the day of the weaning, which was reflected in the intensification of mineralization and increased bone strength.


Author(s):  
Lucas Sousa Macedo ◽  
Renato Polese Rusig ◽  
Gustavo Bersani Silva ◽  
Alvaro Baik Cho ◽  
Teng Hsiang Wei ◽  
...  

BACKGROUND: Microsurgical flaps are widely used to treat complex traumatic wounds of upper and lower limbs. Few studies have evaluated whether the vascular changes in preoperative computed tomography angiography (CTA) influence the selection of recipient vessel and type of anastomosis and the microsurgical flaps outcomes including complications. OBJECTIVE: The aim of this study was to evaluate if preoperative CTA reduces the occurrence of major complications (revision of the anastomosis, partial or total flap failure, and amputation) of the flaps in upper and lower limb trauma, and to describe and analyze the vascular lesions of the group with CTA and its relationship with complications. METHODS: A retrospective cohort study was undertaken with all 121 consecutive patients submitted to microsurgical flaps for traumatic lower and upper limb, from 2014 to 2020. Patients were divided into two groups: patients with preoperative CTA (CTA+) and patients not submitted to CTA (CTA–). The presence of postoperative complications was assessed and, within CTA+, we also analyzed the number of patent arteries on CTA and described the arterial lesions. RESULTS: Of the 121 flaps evaluated (84 in the lower limb and 37 in the upper limb), 64 patients underwent preoperative CTA. In the CTA+ group, 56% of patients with free flaps for lower limb had complete occlusion of one artery. CTA+ patients had a higher rate of complications (p = 0.031), which may represent a selection bias as the most complex limb injuries and may have CTA indicated more frequently. The highest rate of complications was observed in chronic cases (p = 0.034). There was no statistically significant difference in complications in patients with preoperative vascular injury or the number of patent arteries. CONCLUSIONS: CTA should not be performed routinely, however, CTA may help in surgical planning, especially in complex cases of high-energy and chronic cases, since it provides information on the best recipient artery and the adequate level to perform the microanastomosis, outside the lesion area.


2021 ◽  
Vol 20 ◽  
pp. 153303382110101
Author(s):  
Thet-Thet Lwin ◽  
Akio Yoneyama ◽  
Hiroko Maruyama ◽  
Tohoru Takeda

Phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer provides high sensitivity and high spatial resolution, and it has the ability to depict the fine morphological structures of biological soft tissues, including tumors. In this study, we quantitatively compared phase-contrast synchrotron-based X-ray computed tomography images and images of histopathological hematoxylin-eosin-stained sections of spontaneously occurring rat testicular tumors that contained different types of cells. The absolute densities measured on the phase-contrast synchrotron-based X-ray computed tomography images correlated well with the densities of the nuclear chromatin in the histological images, thereby demonstrating the ability of phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer to reliably identify the characteristics of cancer cells within solid soft tissue tumors. In addition, 3-dimensional synchrotron-based phase-contrast X-ray computed tomography enables screening for different structures within tumors, such as solid, cystic, and fibrous tissues, and blood clots, from any direction and with a spatial resolution down to 26 μm. Thus, phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer shows potential for being useful in preclinical cancer research by providing the ability to depict the characteristics of tumor cells and by offering 3-dimensional information capabilities.


2015 ◽  
Vol 42 (6Part1) ◽  
pp. 2892-2896 ◽  
Author(s):  
Thomas Weber ◽  
Georg Pelzer ◽  
Jens Rieger ◽  
André Ritter ◽  
Gisela Anton

2011 ◽  
Vol 38 (S1) ◽  
pp. S106-S116 ◽  
Author(s):  
Thomas Köhler ◽  
Klaus Jürgen Engel ◽  
Ewald Roessl

2022 ◽  
Vol 168 ◽  
pp. 108911
Author(s):  
Yuji Fukaya ◽  
Shoichiro Okita ◽  
Shigeaki Nakagawa ◽  
Minoru Goto ◽  
Hirofumi Ohashi

2017 ◽  
Vol 1 (6) ◽  
pp. 505-510 ◽  
Author(s):  
A. Sarno ◽  
B. Golosio ◽  
P. Russo ◽  
F. Arfelli ◽  
R. Bellazzini ◽  
...  

2016 ◽  
Vol 23 (2) ◽  
pp. 600-605 ◽  
Author(s):  
Jianbo Jian ◽  
Hao Yang ◽  
Xinyan Zhao ◽  
Ruijiao Xuan ◽  
Yujie Zhang ◽  
...  

Visualization of the microvascular network and thrombi in the microvasculature is a key step to evaluating the development of tumor growth and metastasis, and influences treatment selection. X-ray phase-contrast computed tomography (PCCT) is a new imaging technique that can detect minute changes of density and reveal soft tissues discrimination at micrometer-scale resolution. In this study, six human resected hepatocellular carcinoma (HCC) tissues were investigated with PCCT. A histological stain was added to estimate the accuracy of PCCT. The results showed that the fine structures of the microvasculature (measuring 30–100 µm) and thrombi in tiny blood vessels were displayed clearly on imaging the HCC tissues by PCCT. Moreover, density distributions of the thrombi were obtained, which could be reliably used to distinguish malignant from benign thrombi in HCC. In conclusion, PCCT can clearly show the three-dimensional subtle structures of HCC that cannot be detected by conventional absorption-based computed tomography and provides a new method for the imageology of HCC.


Sign in / Sign up

Export Citation Format

Share Document