Intracellular iron concentration of neurons with and without perineuronal nets

Author(s):  
Anja Fiedler ◽  
Tilo Reinert ◽  
Markus Morawski ◽  
Gert Brückner ◽  
Thomas Arendt ◽  
...  
Inflammation ◽  
2014 ◽  
Vol 38 (2) ◽  
pp. 718-727 ◽  
Author(s):  
Guo-yang Zhao ◽  
Dong-hua Di ◽  
Bo Wang ◽  
Xi Huang ◽  
You-jia Xu

2008 ◽  
Vol 75 (7) ◽  
pp. 2062-2073 ◽  
Author(s):  
Luciana Herve-Jimenez ◽  
Isabelle Guillouard ◽  
Eric Guedon ◽  
Samira Boudebbouze ◽  
Pascal Hols ◽  
...  

ABSTRACT Streptococcus thermophilus is one of the most widely used lactic acid bacteria in the dairy industry, in particular in yoghurt manufacture, where it is associated with Lactobacillus delbrueckii subsp. bulgaricus. This bacterial association, known as a proto-cooperation, is poorly documented at the molecular and regulatory levels. We thus investigate the kinetics of the transcriptomic and proteomic modifications of S. thermophilus LMG 18311 in response to the presence of L. delbrueckii subsp. bulgaricus ATCC 11842 during growth in milk at two growth stages. Seventy-seven different genes or proteins (4.1% of total coding sequences), implicated mainly in the metabolism of nitrogen (24%), nucleotide base (21%), and iron (20%), varied specifically in coculture. One of the most unpredicted results was a significant decrease of most of the transcripts and enzymes involved in purine biosynthesis. Interestingly, the expression of nearly all genes potentially encoding iron transporters of S. thermophilus decreased, whereas that of iron-chelating dpr as well as that of the fur (perR) regulator genes increased, suggesting a reduction in the intracellular iron concentration, probably in response to H2O2 production by L. bulgaricus. The present study reveals undocumented nutritional exchanges and regulatory relationships between the two yoghurt bacteria, which provide new molecular clues for the understanding of their associative behavior.


1998 ◽  
Vol 9 (1) ◽  
pp. 77-84 ◽  
Author(s):  
L Chen ◽  
R A Boadle ◽  
D C Harris

Proteinuria has been invoked as a cause of tubulointerstitial injury in chronic renal disease, and in vivo studies have suggested indirectly the particular nephrotoxicity of one urinary protein holotransferrin (Tf-Fe). However, to date there has been no direct evidence for the nephrotoxicity of Tf-Fe. To examine the potential cytotoxicity of Tf-Fe and the mechanism involved, and to compare this to another urinary protein albumin, rat proximal tubule cells were studied in primary culture. Tf-Fe at pH 6.0 caused functional and ultrastructural injury, but no cytotoxicity was seen with cells exposed to albumin, apotransferrin (transferrin), or Tf-Fe at pH 7.4. The influence of pH on Tf-Fe-induced cytotoxicity was not due to pH per se, but could be explained by an effect on Tf-Fe uptake. At pH 6.0, uptake of 125I-Tf-Fe (3.55 +/- 0.05 versus 1.25 +/- 0.10 fmol/dish, P < 0.01) and intracellular iron concentration (1.14 +/- 0.25 versus 0.46 +/- 0.23 nmol/dish, P < 0.01) were increased compared with values at pH 7.4. In contrast, pH 6.0 did not increase iron uptake from FeCl3. Lysine (100 mM) inhibited Tf-Fe uptake, decreased intracellular iron concentration, and attenuated Tf-Fe-induced cytotoxicity. The iron chelator des-ferrioxamine (200 microM) and hydroxyl radical scavenger dimethylpyrroline N-oxide (32 mM) abolished lactate dehydrogenase leakage induced by Tf-Fe at pH 6.0. Lipid peroxidation, as assessed by production of malondialdehyde, preceded lactate dehydrogenase leakage. In summary, holotransferrin, but not albumin, is toxic to rat proximal tubule cells, a pH-dependent effect involving its uptake into tubule cells, its iron moiety, and its lipid peroxidation.


Microbiology ◽  
2014 ◽  
Vol 160 (8) ◽  
pp. 1637-1647 ◽  
Author(s):  
Satya Deo Pandey ◽  
Mitali Choudhury ◽  
Manjula Sritharan

The influence of iron levels on the transcription of the hupB gene in Mycobacterium tuberculosis is the focus of this study. Studies in our laboratory showed HupB to be co-expressed with the two siderophores in low-iron organisms. Mycobactin biosynthesis is repressed by the IdeR–Fe2+ complex that binds the IdeR box in the mbtB promoter. Recently, we demonstrated the positive regulatory effect of HupB on mycobactin biosynthesis by demonstrating its binding to a 10 bp HupB box in the mbtB promoter. Earlier, we observed that HupB, expressed maximally in low-iron media (0.02 µg Fe ml−1; 0.36 µM Fe) was still detectable at 8 µg Fe ml−1 (144 µM Fe) when the siderophores were absent and complete repression was seen only at 12 µg Fe ml−1 (216 µM Fe). In this study, we observed elevated levels of hupB transcripts in iron-limited organisms. IdeR, and not FurA, functioned as the iron regulator, by binding to two IdeR boxes in the hupB promoter. Interestingly, the 10 bp HupB box, first reported in the mbtB promoter, was identified in the hupB promoter. Using DNA footprinting and electrophoretic mobility shift assays, we demonstrated the functionality of the HupB box and the two IdeR boxes. The high hupB transcript levels expressed by the organism and the in vitro protein–DNA interaction studies led us to hypothesize the sequence of events occurring in response to changes in the intracellular iron concentration, emphasizing the roles played by IdeR and HupB in iron homeostasis.


Blood ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 623-628 ◽  
Author(s):  
J Edwards ◽  
H Huebers ◽  
C Kunzler ◽  
C Finch

Iron metabolism in the Belgrade rat was examined in the intact animal and in the reticulocyte suspensions. The plasma iron turnover was increased. However, when allowance was made for the effect of the elevated plasma iron concentration, erythroid marrow capacity for iron uptake was at basal levels. Numbers of erythroid cells in marrow and spleen measured by the radioiron dilution technique were increased. Thus iron uptake was not proportionate to the erythroid hyperplasia in the b/b rat, despite a more than adequate plasma iron supply. This relative deficiency in iron uptake was reflected in a severe microcytosis and elevated red cell protoporphyrin. Reticulocyte incubation studies demonstrated an unimpaired uptake of the transferrin- iron-receptor complex but a marked reduction in iron accumulation. The diferric transferrin molecule, when it did give up iron within the cell, released both of its iron atoms so that only apotransferrin was returned to the media. In contrast to the nearly complete release of iron within the normal reticulocyte, the major portion of iron taken up by the Belgrade reticulocyte was returned to the plasma. The release mechanism that can be impaired in iron-deficient reticulocytes by EDTA or cadmium was shown to be affected by lower concentrations of these substances in the Belgrade reticulocyte. It is concluded that the Belgrade rat has an abnormality of iron release within the absorptive vacuole that is responsible for a state of intracellular iron deficiency, involving the erythron and other body tissues.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2200-2200
Author(s):  
Evangelia Vlachodimitropoulou ◽  
Garbowski Maciej ◽  
John B Porter

Abstract Introduction Monotherapy with clinically available chelators, namely deferoxaime (DFO), deferasirox (DFX) or deferiprone (DFP) is effective but often slow and suboptimal. Combinations of DFO with DFP have been used clinically to enhance cellular iron mobilization but the conditions under which this occurs have not been studied systematically. With the emergence of DFX, the possibility exists to combine this with either DFO or DFP to enhance chelation. We have developed a system to study the optimal concentrations and times of exposure to these chelators, alone or in combination for maximising cellular iron removal. Isobol modeling has been used to determine whether interaction is additive or synergistic. The demonstration of synergy would imply the primary chelator acting as a ‘sink’ for iron chelated and donated to this sink by low concentrations of a secondary ‘shuttle’ chelator as shown in plasma (Evans et al. TransL. Res, 2010). Methods Human hepatocellular carcinoma (HuH-7) cells were chosen as hepatocytes are the major cell of iron storage in iron overload. Iron concentration was determined using the ferRozine (Riemer et al. Anal Biochem. 2004). A threefold increase of intracellular iron compared to control was obtained by serially treating cells with 10% FBS RPMI media. The cells were then exposed to iron chelator then lysed and intracellular iron concentration determined via the ferrozine assay, normalized against protein content. Cell viability was assessed using 0.4% Trypan blue as well as Acridine Orange /Propidium Iodide and was consistently > 98%. Isobolograms were constructed (Tallarida et al, Pharmacol Ther, 2010) as well as a the synergy index (QUOTE 1-1/R) x 100 (%), where R = difference of areas between the line of additivity and the curve of synergy on the isobologram. This index represents how much of the obtained effect exceeds that expected by additivity of two chelators. Results Monotherapy with DFP, DFX or DFO at clinically relevant concentrations of 1 to 30µM iron binding equivalents (IBE), induced both dose and time dependent cellular iron removal. Dual therapy combinations of all 3 chelators enhanced iron removal at 4, 8 and 12 hours. At 4 hours of incubation, whereas 10µM DFO alone had no demonstrable effect on cellular iron removal, addition of DFP at as little as 1µM IBE increased cellular iron removal. Table 1 shows examples of cellular iron removal at specimen chelator concentrations alone or in combination at 8h. The combination of DFX with DFO, DFX with DFP and DFP with DFO all resulted in enhanced cellular iron removal. The combination of DFP and DFX was the most effective. Isobol plot analysis from multiple chelator concentrations demonstrated synergy for all pairs at 4 and 8 hours of exposure. The derived synergy index at 8h indicates that when DFX and DFO are combined, 49% of the chelation effect is due to synergy in this system and 51% in the case of DFP and DFO combination. Most interestingly, the synergistic effect is even greater, in the case of the two oral chelators DFP and DFX when in combination (59%). Figure 1. Conclusion Remarkably low concentrations of a second chelator are required to enhance cellular iron removal by the primary chelator. Isobol analysis shows synergy rather than additivity as the mechanism for enhanced chelation for all 3 combinations, implying a ‘shuttle’ and ‘sink’ effect. Interestingly, the combination of two oral chelators DFP and DFX showed the most marked enhancement of cellular iron removal, without cellular toxicity, suggesting a potentially powerful therapeutic approach, provided this is also well tolerated clinically. The long plasma half life of once daily oral DFX will allow a continuous ‘sink’ for iron shuttled by the shorter acting DFP. Line of Additivity Curve of Synergy below the line Disclosures: Porter: Novartis: Consultancy, Honoraria, Research Funding; Shire: Consultancy, Honoraria; Celgene: Consultancy.


2005 ◽  
Vol 10 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Stewart Leung ◽  
April Holbrook ◽  
Beverly King ◽  
Hong-Tao Lu ◽  
Vincent Evans ◽  
...  

Effector functions and proliferation of T helper (Th) cells are influenced by cytokines in the environment. Th1 cells respond to a synergistic effect of interleukin-12 (IL-12) and interleukin-18 (IL-18) to secrete interferon-gamma (IFN-γ). In contrast, Th2 cells respond to interleukin-4 (IL-4) to secrete IL-4, interleukin-13 (IL-13), interleukin-5 (IL-5), and interleukin-10 (IL-10). The authors were interested in identifying nonpeptide inhibitors of the Th1 response selective for the IL-12/IL-18-mediated secretion of IFN-γ while leaving the IL-4-mediated Th2 cytokine secretion relatively intact. The authors established a screening protocol using human peripheral blood mononuclear cells (PBMCs) and identified the hydrazino anthranilate compound 1 as a potent inhibitor of IL-12/IL-18-mediated IFN-γ secretion from CD3+ cells with an IC50 around 200 nM. The inhibitor was specific because it had virtually no effect on IL-4-mediated IL-13 release from the same population of cells. Further work established that compound 1 was a potent intracellular iron chelator that inhibited both IL-12/IL-18- and IL-4-mediated T cell proliferation. Iron chelation affects multiple cellular pathways in T cells. Thus, the IL-12/IL-18-mediated proliferation and IFN-γ secretion are very sensitive to intracellular iron concentration. However, the IL-4-mediated IL-13 secretion does not correlate with proliferation and is partially resistant to potent iron chelation


Sign in / Sign up

Export Citation Format

Share Document