EM.P.3.06 Transient upregulation of matrilin-2 gene expression suggests a role in early steps of skeletal muscle regeneration

2009 ◽  
Vol 19 (8-9) ◽  
pp. 575-576
Author(s):  
É. Korpos ◽  
L. Mátés ◽  
L. Mendler ◽  
M. Kiricsi ◽  
Á. Zvara ◽  
...  
2012 ◽  
Vol 446 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Xiaozhong Shi ◽  
David C. Seldin ◽  
Daniel J. Garry

Previous studies have established that Foxk1 (forkhead box k1) plays an important role in skeletal muscle regeneration. Foxk1 regulates the cell-cycle progression of myogenic progenitors by repressing the cell-cycle inhibitor gene p21. However, the underlying mechanism is not well understood. In the present study, we report the identification of Sds3 (suppressor of defective silencing 3) as an adaptor protein that recruits the Sin3 [SWI (switch)-independent 3]–HDAC (histone deacetylase) repression complex and binds Foxk1. Using GST (glutathione transferase) pull-down assays, we defined the interaction between the Foxk1 FHA (forkhead-associated domain) domain and phospho-Thr49 in Sds3. We demonstrated that the transcriptional repression of Foxk1 is dependent on the Sin3–Sds3 repression complex, and knockdown of Sds3 results in cell-cycle arrest. We further identified the protein kinase CK2 as the protein kinase for Sds3 Thr49 and demonstrated that the protein kinase activity of CK2 is required for proper cell-cycle progression. Analysis of CK2 mutant mice reveals perturbation of skeletal muscle regeneration due to the dysregulation of cell-cycle kinetics. Overall, these studies define a CK2–Sds3–Foxk1 cascade that modulates gene expression and regulates skeletal muscle regeneration.


1998 ◽  
Vol 76 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Judy E Anderson

Regeneration of skeletal muscle tissue includes sequential processes of muscle cell proliferation and commitment, cell fusion, muscle fiber differentiation, and communication between cells of various tissues of origin. Central to the process is the myosatellite cell, a quiescent precursor cell located between the mature muscle fiber and its sheath of external lamina. To form new fibers in a muscle damaged by disease or direct injury, satellite cells must be activated, proliferate, and subsequently fuse into an elongated multinucleated cell. Current investigations in the field concern modulation of the effectiveness of skeletal muscle regeneration, the regeneration-specific role of myogenic regulatory gene expression distinct from expression during development, the impact of growth and scatter factors and their respective receptors in amplifying precursor numbers, and promoting fusion and maturation of new fibers and the ultimate clinical therapeutic applications of such information to alleviate disease. One approach to muscle regeneration integrates observations of muscle gene expression, proliferation, myoblast fusion, and fiber growth in vivo with parallel studies of cell cycling behaviour, endocrine perturbation, and potential biochemical markers of steps in the disease-repair process detected by magnetic resonance spectroscopy techniques. Experiments on muscles from limb, diaphragm, and heart of the mdx dystrophic mouse, made to parallel clinical trials on human Duchenne muscular dystrophy, help to elucidate mechanisms underlying the positive treatment effects of the glucocorticoid drug deflazacort. This review illustrates an effective combination of in vivo and in vitro experiments to integrate the distinctive complexities of post-natal myogenesis in regeneration of skeletal muscle tissue.Key words: satellite cell, cell cycling, HGF/SF, c-met receptor, MyoD, myogenin, magnetic resonance spectroscopy, mdx dystrophic mouse, deflazacort.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 441
Author(s):  
Danielle E. Levitt ◽  
Alice Y. Yeh ◽  
Matthew J. Prendergast ◽  
Ronald G. Budnar, Jr. ◽  
Katherine A. Adler ◽  
...  

Alcohol use and aging are risk factors for falls requiring immobilization and leading to skeletal muscle atrophy. Skeletal muscle regeneration is integral to post-immobilization recovery. This study aimed to elucidate the effects of alcohol and ovarian hormone loss on the expression of genes implicated in muscle regeneration. Three-month-old female rats received an ovariectomy or a sham surgery, consumed an alcohol-containing or control diet for 10 weeks, were subjected to unilateral hind limb immobilization for seven days, and finally were allowed a three (3d)- or 14 (14d)-day recovery. Immobilization decreased the quadriceps weight at 3d and 14d, and alcohol decreased the quadriceps weight at 14d in the nonimmobilized hind limb (NI). At 3d, alcohol decreased gene expression of myoblast determination protein (MyoD) in the immobilized hind limb (IMM) and myocyte enhancer factor (Mef)2C and tumor necrosis factor (TNF)α in NI, and ovariectomy increased MyoD and decreased TNFα expression in NI. At 14d, alcohol increased the gene expression of Mef2C, MyoD, TNFα, and transforming growth factor (TFG)β in IMM and decreased monocyte chemoattractant protein (MCP)1 expression in NI; ovariectomy increased TNFα expression in NI, and alcohol and ovariectomy together increased Mef2C expression in NI. Despite increased TGFβ expression, there was no concomitant alcohol-mediated increase in collagen in IMM at 14d. Overall, these data indicate that alcohol dysregulated the post-immobilization alteration in the expression of genes implicated in regeneration. Whether alcohol-mediated molecular changes correspond with post-immobilization functional alterations remains to be determined.


2020 ◽  
Author(s):  
Jessica L. Ungerleider ◽  
Monika Dzieciatkowska ◽  
Kirk C. Hansen ◽  
Karen L. Christman

AbstractDecellularized extracellular matrix (ECM) hydrogels present a novel, clinical intervention for a myriad of regenerative medicine applications. The source of ECM is typically the same tissue to which the treatment is applied; however, the need for tissue specific ECM sources has not been rigorously studied. We hypothesized that tissue specific ECM would improve regeneration through preferentially stimulating physiologically relevant processes (e.g. progenitor cell proliferation and differentiation). One of two decellularized hydrogels (tissue specific skeletal muscle or non mesoderm-derived lung) or saline were injected intramuscularly two days after notexin injection in mice (n=7 per time point) and muscle was harvested at days 5 and 14 for histological and gene expression analysis. Both injectable hydrogels were decellularized using the same detergent and were controlled for donor characteristics (i.e. species, age). At day 5, the skeletal muscle ECM hydrogel significantly increased the density of Pax7+ satellite cells in the muscle. Gene expression analysis at day 5 showed that skeletal muscle ECM hydrogels increased expression of genes implicated in muscle contractility. By day 14, skeletal muscle ECM hydrogels improved muscle regeneration over saline and lung ECM hydrogels as shown through a shift in fiber cross sectional area distribution towards larger fibers. This data indicates a potential role for muscle-specific regenerative capacity of decellularized, injectable muscle hydrogels. Further transcriptomic analysis of whole muscle mRNA indicates the mechanism of tissue specific ECM-mediated tissue repair may be immune and metabolism pathway-driven. Taken together, this suggests there is benefit in using tissue specific ECM for regenerative medicine applications.


2014 ◽  
Vol 46 ◽  
pp. 638-639
Author(s):  
Lemuel A. Brown ◽  
Jillian F. Patton ◽  
Alyssa M. Papineau ◽  
Nicholas P. Greene ◽  
Tyrone A. Washington

2016 ◽  
Vol 48 ◽  
pp. 583
Author(s):  
Michelle A. Tedrowe ◽  
Lemuel A. Brown ◽  
Richard A. Perry ◽  
Megan E. Rosa ◽  
Jacob L. Brown ◽  
...  

2020 ◽  
Author(s):  
Paromita Dey ◽  
Bijan K. Dey

AbstractSkeletal muscle regenerates throughout the lifetime to maintain normal development, growth, and physiological function. Skeletal muscle regeneration occurs in a coordinated fashion and requires strict regulation of myogenic gene expression during the process. Numerous studies have established the critical role of microRNAs in regulating post-transcriptional gene expression in diverse biological processes including differentiation, development, and regeneration. We have revealed in an earlier study that a large number of microRNAs were differentially expressed during myoblast differentiation. Here, we report the role of one such microRNA, the miR-24-3p, in skeletal muscle differentiation and regeneration. miR-24-3p is induced during myoblast differentiation and skeletal muscle regeneration. Exogenous miR-24-3p promotes while inhibition of miR-24-3p represses myoblast differentiation. miR-24-3p promotes myoblast differentiation by directly targeting and regulating the high mobility group AT-hook 1 (HMGA1). Consistent with the finding that HMGA1 is a repressor of myogenic differentiation, the miR-24-3p-resistant form of HMGA1 devoid of 3’untranslated region, inhibits myoblast differentiation. Intramuscular injection of antagomirs specific to miR-24-3p into the tibialis anterior muscle prevents HMGA1 down-regulation and impairs regeneration. These findings provide evidence for the requirement of the miR-24-3p/HMGA1 axis for skeletal muscle differentiation and regeneration.


Sign in / Sign up

Export Citation Format

Share Document