Assessing sub-lethal effects of the dinitroaniline herbicide pendimethalin in zebrafish embryos/larvae (Danio rerio)

2021 ◽  
pp. 107051
Author(s):  
Shuo Wang ◽  
Sofia Lopez ◽  
Nader El Ahmadie ◽  
Andrew S. Wengrovitz ◽  
Jade Ganter ◽  
...  
Author(s):  
Ann-Kathrin Loerracher ◽  
Thomas Braunbeck

AbstractGiven the strong trend to implement zebrafish (Danio rerio) embryos as translational model not only in ecotoxicological, but also toxicological testing strategies, there is an increasing need for a better understanding of their capacity for xenobiotic biotransformation. With respect to the extrapolation of toxicological data from zebrafish embryos to other life stages or even other organisms, qualitative and quantitative differences in biotransformation pathways, above all in cytochrome P450-dependent (CYP) phase I biotransformation, may lead to over- or underestimation of the hazard and risk certain xenobiotic compounds may pose to later developmental stages or other species. This review provides a comprehensive state-of-the-art overview of the scientific knowledge on the development of the CYP1-4 families and corresponding phase I biotransformation and bioactivation capacities in zebrafish. A total of 68 publications dealing with spatiotemporal CYP mRNA expression patterns, activities towards mammalian CYP-probe substrates, bioactivation and detoxification activities, as well as metabolite profiling were analyzed and included in this review. The main results allow for the following conclusions: (1) Extensive work has been done to document mRNA expression of CYP isoforms from earliest embryonic stages of zebrafish, but juvenile and adult zebrafish have been largely neglected so far. (2) There is insufficient understanding of how sex- and developmental stage-related differences in expression levels of certain CYP isoforms may impact biotransformation and bioactivation capacities in the respective sexes and in different developmental stages of zebrafish. (3) Albeit qualitatively often identical, many studies revealed quantitative differences in metabolic activities of zebrafish embryos and later developmental stages. However, the actual relevance of age-related differences on the outcome of toxicological studies still needs to be clarified. (4) With respect to current remaining gaps, there is still an urgent need for further studies systematically assessing metabolic profiles and capacities of CYP isoforms in zebrafish. Given the increasing importance of Adverse Outcome Pathway (AOP) concepts, an improved understanding of CYP capacities appears essential for the interpretation and outcome of (eco)toxicological studies.


Chemosphere ◽  
2012 ◽  
Vol 86 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Andréa Novelli ◽  
Bruna Horvath Vieira ◽  
Daniela Cordeiro ◽  
Luciana Teresa Dias Cappelini ◽  
Eny Maria Vieira ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 383-391 ◽  
Author(s):  
R. Toyama ◽  
M.L. O'Connell ◽  
C.V. Wright ◽  
M.R. Kuehn ◽  
I.B. Dawid

One of the first intercellular signalling events in the vertebrate embryo leads to mesoderm formation and axis determination. In the mouse, a gene encoding a new member of the TGF-beta superfamily, nodal, is disrupted in a mutant deficient in mesoderm formation (Zhou et al., 1993, Nature 361, 543). nodal mRNA is found in prestreak mouse embryos, consistent with a role in the development of the dorsal axis. To examine the biological activities of nodal, we have studied the action of this factor in eliciting axis determination in the zebrafish, Danio rerio. Injection of nodal mRNA into zebrafish embryos caused the formation of ectopic axes that included notochord and somites. Axis duplication was preceded by the generation of an apparent ectopic shield (organizer equivalent) in nodal-injected embryos, as indicated by the appearance of a region over-expressing gsc and lim1; isolation and expression in the shield of the lim1 gene is reported here. These results suggest a role for a nodal-like factor in pattern formation in zebrafish.


2014 ◽  
Vol 33 (12) ◽  
pp. 2859-2868 ◽  
Author(s):  
Jing Hua ◽  
Martina G. Vijver ◽  
Michael K. Richardson ◽  
Farooq Ahmad ◽  
Willie J.G.M. Peijnenburg

Author(s):  
Noor Izati Abd Aziz ◽  
Vikneswari Perumal ◽  
Suganya Murugesu ◽  
Qamar Uddin Ahmed ◽  
Bisha Fathamah Uzir ◽  
...  

 The use of zebrafish vertebrate model in vivo analysis of the drug toxicity and efficacy, chemical toxicity, and safety is increasing in recent researches. Momordica charantia Linn (Cucurbitaceae) has been traditionally claimed for its many protective roles. However, the development of toxicity effect may cause morphological abnormalities by using an embryo of zebrafish (Danio Rerio) is unknown. Hence, this study was designed to determine the toxicity and teratogenic effect of hydroethanolic extract of M. charantia fruit using Zebrafish (Danio Rerio) embryos. The crude extract was prepared from the fruit of M. charantia using 80% hydroethanolic solvent. The zebrafish embryos were exposed to serial dilution of crude extract. The active constituent was analyzed using gas chromatography coupled with mass spectrophotometry (GC-MS) Momordica charantia Linn (Cucurbitaceae) has been widely commercialized based on traditional usage as an antidiabetic product. The current study has shown the toxic effects of the M.  charantia fruit extract on the developing zebrafish embryos, and the median lethal concentration (LC50) was calculated to be 725.90 mg/L at 48 hpt. The observed effects are dependent on the time of exposure and concentrations of the extract. At higher concentration, the extract causes some morphological defects such as less pigmentation, dented tail, spinal curvature, oedema, reduced hatchability, and growth retardation, that indicates the presence of toxicant(s). Based on the GC-MS profiling, some of the compounds identified in the hydroethanolic extract, such as propanedioic acid and glutamine, may have caused the teratogenic effects to the embryos. Further research on the M. charantia fruit's metabolites should be carried out prior to any nutraceutical or pharmaceutical application.


2018 ◽  
Vol 634 ◽  
pp. 478-487 ◽  
Author(s):  
Le Qian ◽  
Feng Cui ◽  
Yang Yang ◽  
Yuan Liu ◽  
Suzhen Qi ◽  
...  

2019 ◽  
Vol 74 ◽  
pp. 106809 ◽  
Author(s):  
Christopher L. Souders ◽  
Priscilla Xavier ◽  
Veronica Perez-Rodriguez ◽  
Naomi Ector ◽  
Ji-Liang Zhang ◽  
...  

2016 ◽  
Vol 43 ◽  
pp. 159-165 ◽  
Author(s):  
Alexander G. Kramer ◽  
Jompobe Vuthiganon ◽  
Christopher S. Lassiter

Zygote ◽  
2009 ◽  
Vol 18 (2) ◽  
pp. 155-158 ◽  
Author(s):  
J. Cardona-Costa ◽  
M. Francisco-Simão ◽  
M. Pérez-Camps ◽  
F. García-Ximénez

SummaryIn zebrafish chimaerism experiments, the cell injection can involve intra-embryonic cell lyses by osmolar effects. Moreover, the donor cells can be injured during manipulation due to osmolar changes into the transplant pipette. Therefore, the present study aimed to assess the effects of manipulation medium osmolarity on embryonic survival and donor cell viability.In Experiment I, 0.1 μl to 0.15 μl approximately of an isosmolar solution (300 mOsm) was injected into recipient embryos, which were kept at 300 (E1) or 30 mOsm (E2). Survival at day 1 was significantly higher in the E2 group than in E1 (E1: 68% vs E2: 81%, p < 0.05), but after 5 days embryo survival in the E1 group was slightly higher. In Experiment II, donor cells from zebrafish embryos were exposed (or not) to a possible osmolarity change (inner pipette medium: 300 mOsm vs external medium: 30 or 300 mOsm) using two different micropipette outer diameters, 40–50 and 60–70 μm. Cell mechanical damage was detected in the 40–50 μm pipette (p < 0.05), but not by the handling medium osmolarity. Results recommend the use of a 300 mOsm manipulation medium and bore-sized pipettes adjusted as closely as possible to the donor cell size.


Sign in / Sign up

Export Citation Format

Share Document