Buoyant jet and two-phase jet-plume modeling for application to large water pools

2011 ◽  
Vol 241 (5) ◽  
pp. 1667-1700 ◽  
Author(s):  
Timothy L. Norman ◽  
Shripad T. Revankar
Author(s):  
Brady Drew ◽  
John Charonko ◽  
Pavlos Vlachos

Entrainment characteristics of two-phase flow (liquid-gas) buoyant jets differ significantly from their single-phase flow counterparts. Past studies have not adequately described the mechanisms that cause the gas jet to entrain liquid from its surroundings and expand. In this work, Particle Image Velocimetry (PIV) and shadowgraph flow visualization experiments have been conducted on submerged round gas jets of varying speeds and nozzle diameters with the goal of improving our understanding of the processes of entrainment and expansion in a two-phase jet. We hypothesize that liquid is entrained into the gas column through (1) shear entrainment due to instabilities at the interface between the fast-moving gas jet and stagnant liquid, and (2) convective entrainment that occurs when the jet begins to pinch off and transform into a bubbly plume. The total entrainment estimated using the PIV measurements is higher than the respective values that single-phase buoyant jet theory suggests, especially at low jet speeds. This may be an effect of increased convective entrainment as the jet slows down. The shadowgraph flow visualization experiments provide valuable information pertaining to the structure of the jet and the interfacial dynamics.


Author(s):  
Anton Bergant ◽  
Jos M. C. van ’t Westende ◽  
Tiit Koppel ◽  
Janez Gale ◽  
Qingzhi Hou ◽  
...  

A large-scale pipeline test rig at Deltares, Delft, The Netherlands has been used for filling and emptying experiments. Tests have been conducted in a horizontal 250 mm diameter PVC pipe of 258 m length with control valves at the downstream and upstream ends. This paper investigates the accidental simultaneous closure of two automatic control valves during initial testing of the test rig. The simultaneous closure of both valves has induced upsurge and downsurge at the same time. Large water hammer and column separation have caused failure of pipe supports and leakage at pipe joints. The incident was caused by a fault in an electronic conversion box due to power failure. Afterwards the downstream end automatic valve has been modified to a manually operated valve to avoid the accidental simultaneous closure of the valves. The accidental transient event has been fully recorded with pressures, flow rates and water levels. The measurements of the accident are presented, analyzed and discussed in detail. Photographs show the damages to the system.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1509 ◽  
Author(s):  
Yizhou Xiao ◽  
Wenxin Huai ◽  
Bin Ji ◽  
Zhonghua Yang

This paper presents a study on the verification and validation (V&V) of numerical solutions for round buoyant jets in counterflow. The unsteady flow was simulated using an unsteady Reynolds-averaged Navier–Stokes (URANS) solver with a two-phase mixture model. This work aimed to quantitatively investigate the reliability and applicability of various uncertainty estimators in the simulation of a buoyant jet in counterflow. Analysis of the discretization uncertainty estimation results revealed that the factor of safety (FS) and the modified FS (FS1) methods were the appropriate evaluation estimators in the simulation of a buoyant jet in counterflow. Validation by comparison with the experimental data indicated that the area without achieving the validation at the validation level was strongly related to the shear layer between the jet flow and the ambient fluid. Moreover, the predicted concentration contours, coherent structures, and centerline concentration were strongly affected by the grid resolution.


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


Author(s):  
R.W. Carpenter ◽  
Changhai Li ◽  
David J. Smith

Binary Nb-Hf alloys exhibit a wide bcc solid solution phase field at temperatures above the Hfα→ß transition (2023K) and a two phase bcc+hcp field at lower temperatures. The β solvus exhibits a small slope above about 1500K, suggesting the possible existence of a miscibility gap. An earlier investigation showed that two morphological forms of precipitate occur during the bcc→hcp transformation. The equilibrium morphology is rod-type with axes along <113> bcc. The crystallographic habit of the rod precipitate follows the Burgers relations: {110}||{0001}, <112> || <1010>. The earlier metastable form, transition α, occurs as thin discs with {100} habit. The {100} discs induce large strains in the matrix. Selected area diffraction examination of regions ∼2 microns in diameter containing many disc precipitates showed that, a diffuse intensity distribution whose symmetry resembled the distribution of equilibrium α Bragg spots was associated with the disc precipitate.


Author(s):  
U. Dahmen ◽  
K.H. Westmacott

Despite the increased use of convergent beam diffraction, symmetry concepts in their more general form are not commonly applied as a practical tool in electron microscopy. Crystal symmetry provides an abundance of information that can be used to facilitate and improve the TEM analysis of crystalline solids. This paper draws attention to some aspects of symmetry that can be put to practical use in the analysis of structures and morphologies of two-phase materials.It has been shown that the symmetry of the matrix that relates different variants of a precipitate can be used to determine the axis of needle- or lath-shaped precipitates or the habit plane of plate-shaped precipitates. By tilting to a special high symmetry orientation of the matrix and by measuring angles between symmetry-related variants of the precipitate it is possible to find their habit from a single micrograph.


Sign in / Sign up

Export Citation Format

Share Document