scholarly journals A two-phase mathematical model to describe the dissolution of corium crust by molten steel

2021 ◽  
Vol 375 ◽  
pp. 111062
Author(s):  
Shambhavi Nandan ◽  
Florian Fichot ◽  
Fabien Duval
1984 ◽  
Vol 24 (06) ◽  
pp. 606-616 ◽  
Author(s):  
Charles P. Thomas ◽  
Paul D. Fleming ◽  
William K. Winter

Abstract A mathematical model describing one-dimensional (1D), isothermal flow of a ternary, two-phase surfactant system in isotropic porous media is presented along with numerical solutions of special cases. These solutions exhibit oil recovery profiles similar to those observed in laboratory tests of oil displacement by surfactant systems in cores. The model includes the effects of surfactant transfer between aqueous and hydrocarbon phases and both reversible and irreversible surfactant adsorption by the porous medium. The effects of capillary pressure and diffusion are ignored, however. The model is based on relative permeability concepts and employs a family of relative permeability curves that incorporate the effects of surfactant concentration on interfacial tension (IFT), the viscosity of the phases, and the volumetric flow rate. A numerical procedure was developed that results in two finite difference equations that are accurate to second order in the timestep size and first order in the spacestep size and allows explicit calculation of phase saturations and surfactant concentrations as a function of space and time variables. Numerical dispersion (truncation error) present in the two equations tends to mimic the neglected present in the two equations tends to mimic the neglected effects of capillary pressure and diffusion. The effective diffusion constants associated with this effect are proportional to the spacestep size. proportional to the spacestep size. Introduction In a previous paper we presented a system of differential equations that can be used to model oil recovery by chemical flooding. The general system allows for an arbitrary number of components as well as an arbitrary number of phases in an isothermal system. For a binary, two-phase system, the equations reduced to those of the Buckley-Leverett theory under the usual assumptions of incompressibility and each phase containing only a single component, as well as in the more general case where both phases have significant concentrations of both components, but the phases are incompressible and the concentration in one phase is a very weak function of the pressure of the other phase at a given temperature. pressure of the other phase at a given temperature. For a ternary, two-phase system a set of three differential equations was obtained. These equations are applicable to chemical flooding with surfactant, polymer, etc. In this paper, we present a numerical solution to these equations paper, we present a numerical solution to these equations for I D flow in the absence of gravity. Our purpose is to develop a model that includes the physical phenomena influencing oil displacement by surfactant systems and bridges the gap between laboratory displacement tests and reservoir simulation. It also should be of value in defining experiments to elucidate the mechanisms involved in oil displacement by surfactant systems and ultimately reduce the number of experiments necessary to optimize a given surfactant system.


2013 ◽  
Vol 712-715 ◽  
pp. 22-25 ◽  
Author(s):  
Tia Xia ◽  
Zhu He

A mathematical model for the RH refining process was developed and validated by the measured molten steel temperature in situ. It is showed that the model predicted temperature matched the measured value well and the average errors within ±5°C were 86.9%. The model results also showed that for every increase of 100°C of the initial temperature of the chamber inwall , the average molten steel temperature increased by about 8°C. For every blowing extra 50m3 oxygen, the steel temperature increased by about 7°C.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianyu Li ◽  
Chunping Lu ◽  
Dongli Tan

In order to investigate the distribution characteristics of gas-particle two-phase flow in the diesel particulate filter in the capture process, a mathematical model of gas-particle two-phase flow for inside-and-outside filter had been established in the capture process according to the mass conservation equation, momentum conservation equation, and k-ε turbulence equation. The model verification was carried out with the experimental and simulated of flow distribution characteristics of gas-particle two-phase. The obtained results showed that the static pressure gradient along the radial distribution was greater at the inlet of the filter in capture process in the diesel particulate filter, which could easily lead to causing eventual fatigue damage due to stress concentration in the front-end of filter; moreover, the weaker the vortex strength of gas-particle formed in expansion pipe was, the better uniformity of flow velocity and soot concentration distribution were. Therefore, the established mathematical model can be used for predicting gas-particle flow velocity distribution in the diesel particulate filter.


1992 ◽  
Vol 3 (2) ◽  
pp. 181-191
Author(s):  
A. M. Meirmanov ◽  
N. V. Shemetov

In this paper we investigate the mathematical model of the equilibrium of a finite volume in ℝn (n = 1,2, 3) of a two-phase continuous medium, under the assumption that each pure phase is an isotropic elastic solid. The main results in this paper are:(i) the existence and uniqueness of a solution of this mathematical model;(ii) a discussion of the stress-strain law associated with the free energy of this two-phase continuous medium, which is multiple-valued due to the non-smoothness of the Gibbs potential (complementary energy);(iii) a description of the structure of solutions in plane strain.


2018 ◽  
Vol 232 ◽  
pp. 03046
Author(s):  
Luqing Hu ◽  
Xianqing Lei ◽  
Xiaoyi Wang ◽  
Yadong Zhang ◽  
Xiaolin Zuo

In this paper, the working principle of the grating measurement system is combined with the Fourier analysis method of Moiré fringe to establish the mathematical model of the grating signal Lissajous figure to know the quality of the grating signal intuitively. The Mathematica numerical analysis software is used to obtain the graphics of the model, and the correctness of the relationship between the parameters of the grating measurement system and the Lissajous figure equation of the grating signal is verified. The influence of the grating pair angle α on the output voltage signal and Lissajous figure of the grating measurement system is studied. The results show that the intensity of the two-phase output electrical signal decreases gradually with the increase of the deviation of the angle α of the grating pair, but the equal-amplitude of the two-phase output electrical signal does not change; Meanwhile, the shape of the grating signal Lissajous figure gradually changes from the ideal circle to the non-ideal ellipse, until a straight line with a strip slope of 135° is formed.


1970 ◽  
Vol 48 (7) ◽  
pp. 1387-1404 ◽  
Author(s):  
G. A. Yarranton

Models of the determination of the frequencies of 31 species of bryophytes, lichens, and algae in limestone pavement grikes were calculated by multiple regression. Independent variables were parameters of microclimate and surface pH. Percentages of variance accounted for varied from 14 to 72. In most cases the balance is attributable to replicate errors in the estimates of species frequencies and the abundance of zeros in the data. The models were used to predict species frequencies in other grikes, and in most species the mean difference between predicted and observed frequencies was less than 10%. Determinants of species frequency were found to be similar for species growing near the bottoms of the grikes but differed for those occurring near the tops.It is suggested that a two-phase analysis would be more informative than straightforward regression. In phase (a) the conditions under which the expected frequency is nonzero would be delimited; in phase (b) multiple regression would be performed on the observations falling within this region. This proposal is shown to be related to Hutchinson's concepts of fundamental and realized niches. It would also eliminate the problem of the multiple zero.


Sign in / Sign up

Export Citation Format

Share Document