scholarly journals Research and Application of Mathematical Model of Transmission Grating Signal Lissajous Figure

2018 ◽  
Vol 232 ◽  
pp. 03046
Author(s):  
Luqing Hu ◽  
Xianqing Lei ◽  
Xiaoyi Wang ◽  
Yadong Zhang ◽  
Xiaolin Zuo

In this paper, the working principle of the grating measurement system is combined with the Fourier analysis method of Moiré fringe to establish the mathematical model of the grating signal Lissajous figure to know the quality of the grating signal intuitively. The Mathematica numerical analysis software is used to obtain the graphics of the model, and the correctness of the relationship between the parameters of the grating measurement system and the Lissajous figure equation of the grating signal is verified. The influence of the grating pair angle α on the output voltage signal and Lissajous figure of the grating measurement system is studied. The results show that the intensity of the two-phase output electrical signal decreases gradually with the increase of the deviation of the angle α of the grating pair, but the equal-amplitude of the two-phase output electrical signal does not change; Meanwhile, the shape of the grating signal Lissajous figure gradually changes from the ideal circle to the non-ideal ellipse, until a straight line with a strip slope of 135° is formed.

2011 ◽  
Vol 361-363 ◽  
pp. 353-359
Author(s):  
Chuan Xie ◽  
Ling Ling He ◽  
Bing Lin

Autonomous navigation research in the process of drilling has been a very challenging advanced topic and it requires the drill pole must adjust their own space attitude before the directional move. Strapdown inertial navigation has an explicit definition of the space attitude information which will be reflected by the inclination, the azimuth angle and the tool face angle specifically. For the defect in the open mathematical model solver of the spatial attitude information, we derive another mathematical model of the inclination, the magnetic azimuth angle and the tool face angle with the space coordinates transformation, the spatial straight line equation and the dog-leg angle’s definition and give the specific achievable plan by making use of the triple-axis accelerometer and the triple-axis magnetometer. The experimental result indicated that this plan can get the correct spatial attitude within ±0.1º error to the inclination and ±1.5º error to magnetic azimuth angle and the tool face angle. In addition, its cost is very low and the volume is very small, so it is really an ideal choice for the spatial attitude measurement system.


2013 ◽  
Vol 753-755 ◽  
pp. 2083-2086
Author(s):  
Wen Wan

This paper describes the design of calibration system structure and program. Inductive displacement sensor calibration system based on virtual instrument is established by using LabVIEW8.5. It can complete the measured signal acquisition and calibration. In the measurement process, the inductive displacement sensor is a converter that measures a displacement and converts it into a electrical signal. By calibration, the system can be quickly translated the voltage signal into the original displacement signal. Compared with the traditional manual method, the calibration system has the advantage of simple structure and easy operation,and the visual linear fitting straight line can be obtained.


2021 ◽  
Vol 375 ◽  
pp. 111062
Author(s):  
Shambhavi Nandan ◽  
Florian Fichot ◽  
Fabien Duval

2012 ◽  
Vol 246-247 ◽  
pp. 1220-1225
Author(s):  
You Kun Zhong

With the increasing of the number of cars, people are also getting higher and higher demands on the performance of the car, and especially pay attention to the improvement and optimization of automobile transmission system. The transmission is a key part of automobile transmission system, and transmission performance and stability depend on the synchronous machine, so in order to make the vehicle transmission system with higher efficiency, it is necessary to study the synchronous machine. On the basis of elaborating synchronous machine working principle, the use of dynamics theory to establish mathematical model of synchronous machine system, and to carry out the simulation of synchronous machine three-dimensional model in PRO/E environment, then the use of virtual prototype technology to optimize the parameters of synchronous machine, thereby improving the performance of synchronous machine.


1984 ◽  
Vol 24 (06) ◽  
pp. 606-616 ◽  
Author(s):  
Charles P. Thomas ◽  
Paul D. Fleming ◽  
William K. Winter

Abstract A mathematical model describing one-dimensional (1D), isothermal flow of a ternary, two-phase surfactant system in isotropic porous media is presented along with numerical solutions of special cases. These solutions exhibit oil recovery profiles similar to those observed in laboratory tests of oil displacement by surfactant systems in cores. The model includes the effects of surfactant transfer between aqueous and hydrocarbon phases and both reversible and irreversible surfactant adsorption by the porous medium. The effects of capillary pressure and diffusion are ignored, however. The model is based on relative permeability concepts and employs a family of relative permeability curves that incorporate the effects of surfactant concentration on interfacial tension (IFT), the viscosity of the phases, and the volumetric flow rate. A numerical procedure was developed that results in two finite difference equations that are accurate to second order in the timestep size and first order in the spacestep size and allows explicit calculation of phase saturations and surfactant concentrations as a function of space and time variables. Numerical dispersion (truncation error) present in the two equations tends to mimic the neglected present in the two equations tends to mimic the neglected effects of capillary pressure and diffusion. The effective diffusion constants associated with this effect are proportional to the spacestep size. proportional to the spacestep size. Introduction In a previous paper we presented a system of differential equations that can be used to model oil recovery by chemical flooding. The general system allows for an arbitrary number of components as well as an arbitrary number of phases in an isothermal system. For a binary, two-phase system, the equations reduced to those of the Buckley-Leverett theory under the usual assumptions of incompressibility and each phase containing only a single component, as well as in the more general case where both phases have significant concentrations of both components, but the phases are incompressible and the concentration in one phase is a very weak function of the pressure of the other phase at a given temperature. pressure of the other phase at a given temperature. For a ternary, two-phase system a set of three differential equations was obtained. These equations are applicable to chemical flooding with surfactant, polymer, etc. In this paper, we present a numerical solution to these equations paper, we present a numerical solution to these equations for I D flow in the absence of gravity. Our purpose is to develop a model that includes the physical phenomena influencing oil displacement by surfactant systems and bridges the gap between laboratory displacement tests and reservoir simulation. It also should be of value in defining experiments to elucidate the mechanisms involved in oil displacement by surfactant systems and ultimately reduce the number of experiments necessary to optimize a given surfactant system.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianyu Li ◽  
Chunping Lu ◽  
Dongli Tan

In order to investigate the distribution characteristics of gas-particle two-phase flow in the diesel particulate filter in the capture process, a mathematical model of gas-particle two-phase flow for inside-and-outside filter had been established in the capture process according to the mass conservation equation, momentum conservation equation, and k-ε turbulence equation. The model verification was carried out with the experimental and simulated of flow distribution characteristics of gas-particle two-phase. The obtained results showed that the static pressure gradient along the radial distribution was greater at the inlet of the filter in capture process in the diesel particulate filter, which could easily lead to causing eventual fatigue damage due to stress concentration in the front-end of filter; moreover, the weaker the vortex strength of gas-particle formed in expansion pipe was, the better uniformity of flow velocity and soot concentration distribution were. Therefore, the established mathematical model can be used for predicting gas-particle flow velocity distribution in the diesel particulate filter.


2019 ◽  
Vol 5 (1) ◽  
pp. 81-87
Author(s):  
Arkady I. Pereguda

An analysis of statistical data of diagnostic measurements of two parameters determining the performance of the RBMK-1000 SHADR-8A flowmeters – the minimum value of the negative amplitude half-wave at the transistor flow measuring unit (TIBR) input and the mean-square deviation over the flowmeter ball rotation period – made it possible to develop a mathematical model of the flowmeter parametric reliability. This mathematical model is a random process, which is a superposition of two delayed renewal processes. Studying the flowmeter operational reliability model provides an exponential estimate of the probability that the parameters determining the flowmeter performance will not exceed the specified levels. Using the Bernoulli scheme and the probability-estimating relationship for the flowmeter performance parameters, it is possible to calculate the probability of failure-free operation of both a single reactor quadrant and the coolant flow measurement system. In addition, it becomes possible to estimate the quadrant failure rate. Important for practice is the possibility of predicting the number of failed flowmeters depending on the system operation time. An indicator of the system reliability can be the average number of failed flowmeters, the relation for which is given in the paper. All the research results were obtained without any additional assumptions about the random values distribution laws. The obtained results can be easily generalized for the cases when the vector dimension of the determining parameters is greater than two. The use of the results of this study is illustrated by calculated quantitative values of the flowmeter parametric reliability indicators and the coolant flow measurement system.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Mustakim Mustakim ◽  
Indarto Indarto ◽  
Purnomo Purnomo

This research aims to reduce the effect of pressure fluctuations intensity on the sudden expansion of two phase flow of air - water in the same direction with the horizontal placement of the ring. Measurements done by installing a differential pressure transducer device that is placed on pressure points before and after sudden expansion. Output voltage signal recorded by a digital storage osciloscope. Tests conducted on water discharge 0.000038 m 3 / s; 0.000078 m 3 / s; 0.000116 m 3 / s; 0.000154 m 3 / s; 0.000198 m 3 / s; 0.000244 m 3 / s; 0.000284 m 3 / s and air flow 0.000065 m 3 / s; 0.00013 m 3 / s; 0.000195 m 3 / s; 0.000255 m 3 / s; 0.00032 m 3 / s; 0.000385 m 3 / s; 0.00045 m 3 / s. Results showed that if the total mass flow rate increases the pressure drop increases. Installation of the ring can reduce the pressure fluctuations intensity, the most effective installation of the ring using the ring the same diameter. Flow path is generally slug and plug flow pattern.


Sign in / Sign up

Export Citation Format

Share Document