Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures

Nutrition ◽  
2005 ◽  
Vol 21 (3) ◽  
pp. 389-394 ◽  
Author(s):  
Elizabeth A. Miles ◽  
Pinelope Zoubouli ◽  
Philip C. Calder
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 273
Author(s):  
Roberto Fabiani ◽  
Nicolò Vella ◽  
Patrizia Rosignoli

Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs expression, DNA methylation and histone modifications. In this study, we systematically review and discuss, following the PRISMA statements, the epigenetic modifications induced by EVOO and its phenols in different experimental systems. At the end of literature search through “PubMed”, “Web of Science” and “Scopus”, 43 studies were selected.Among them, 22 studies reported data on miRNAs, 15 on DNA methylation and 13 on histone modification. Most of the “epigenomic” changes observed in response to olive oil phenols’ exposure were mechanistically associated with the cancer preventive and anti-inflammatory effects. In many cases, the epigenetics effects regarding the DNA methylation were demonstrated for olive oil but without any indication regarding the presence or not of phenols. Overall, the findings of the present systematic review may have important implications for understanding the epigenetic mechanisms behind the health effects of olive oil. However, generally no direct evidence was provided for the causal relationships between epigenetics modification and EVOO health related effects. Further studies are necessary to demonstrate the real physiological consequences of the epigenetics modification induced by EVOO and its phenolic compounds.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 368
Author(s):  
Paula Garcia-Oliveira ◽  
Cecilia Jimenez-Lopez ◽  
Catarina Lourenço-Lopes ◽  
Franklin Chamorro ◽  
Antia Gonzalez Pereira ◽  
...  

Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO’s unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1016
Author(s):  
Stefania De Santis ◽  
Marina Liso ◽  
Giulio Verna ◽  
Francesca Curci ◽  
Gualtiero Milani ◽  
...  

Extra virgin olive oil (EVOO) represents one of the most important health-promoting foods whose antioxidant and anti-inflammatory activities are mainly associated to its polyphenols content. To date, studies exploring the effect of EVOO polyphenols on dendritic cells (DCs), acting as a crosstalk between the innate and the adaptive immune response, are scanty. Therefore, we studied the ability of three EVOO extracts (cv. Coratina, Cima di Mola/Coratina, and Casaliva), characterized by different polyphenols amount, to regulate DCs maturation in resting conditions or after an inflammatory stimulus. Cima di Mola/Coratina and Casaliva extracts were demonstrated to be the most effective in modulating DCs toward an anti-inflammatory profile by reduction of TNF and IL-6 secretion and CD86 expression, along with a down-modulation of Il-1β and iNOS expression. From factorial analysis results, 9 polyphenols were tentatively established to play a synergistic role in modulating DCs inflammatory ability, thus reducing the risk of chronic inflammation.


2011 ◽  
Vol 59 (21) ◽  
pp. 11491-11500 ◽  
Author(s):  
Jesus Lozano-Sánchez ◽  
Elisa Giambanelli ◽  
Rosa Quirantes-Piné ◽  
Lorenzo Cerretani ◽  
Alessandra Bendini ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 969 ◽  
Author(s):  
Lorena Martínez ◽  
Gaspar Ros ◽  
Gema Nieto

There is a high demand for functional meat products due to increasing concern about food and health. In this work, Zn and Se bioavailability was increased in chicken meat emulsions that are enriched with Hydroxytyrosol (HXT), a phenolic compound obtained from olive leaf. Six different chicken emulsions were elaborated. Three were made with broiler chicken meat supplemented with inorganic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and Extra Virgin Olive Oil (EVOO) (9.5%) added; and, three were made with chicken meat from chickens fed a diet that was supplemented with organic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and EVOO (9.5%) added. The samples were digested in vitro and the percent decomposition of phenolic compounds was measured by HPLC. Mineral availability (Fe, Zn and Se) was measured by cell culture of the Caco-2 cell line and the results were compared with mineral standards (Fe, Zn, and Se). The data obtained showed that neither HXT resistance to digestion nor Fe availability was affected by the presence of organic Zn and Se or phenolic compounds. Zn uptake increased in the presence of HXT, but not when its organic form was used, while Se uptake increased but it was not affected by the presence of HXT. It was concluded that the enrichment of meat—endogenously with organic minerals and exogenously with phenolic compounds—could be considered an interesting strategy for future research and applications in the current meat industry.


2019 ◽  
Vol 13 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Kenia Chávez Ramos ◽  
Luis Fernando Olguín Contreras ◽  
María del Pilar Cañizares Macías

2014 ◽  
Vol 146 ◽  
pp. 558-568 ◽  
Author(s):  
Cristiano Augusto Ballus ◽  
Adriana Dillenburg Meinhart ◽  
Francisco Alberto de Souza Campos ◽  
Roy Edward Bruns ◽  
Helena Teixeira Godoy

2006 ◽  
Vol 29 (4) ◽  
pp. 431-441 ◽  
Author(s):  
SILVIA SILIANI ◽  
ALISSA MATTEI ◽  
LUCA BENEVIERI INNOCENTI ◽  
BRUNO ZANONI

Sign in / Sign up

Export Citation Format

Share Document