Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats

2016 ◽  
Vol 36 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Min Zhang ◽  
Zongkai Xie ◽  
Weina Gao ◽  
Lingling Pu ◽  
Jingyu Wei ◽  
...  
1990 ◽  
Vol 269 (3) ◽  
pp. 781-788 ◽  
Author(s):  
M J Smit ◽  
A M Temmerman ◽  
R Havinga ◽  
F Kuipers ◽  
R J Vonk

The present study concerns short- and long-term effects of interruption of the enterohepatic circulation (EHC) on hepatic cholesterol metabolism and biliary secretion in rats. For this purpose, we employed a technique that allows reversible interruption of the EHC, during normal feeding conditions, and excludes effects of anaesthesia and surgical trauma. [3H]Cholesteryl oleate-labelled human low-density lipoprotein (LDL) was injected intravenously in rats with (1) chronically (8 days) interrupted EHC, (2) interrupted EHC at the time of LDL injection and (3) intact EHC. During the first 3 h after interruption of the EHC, bile flow decreased to 50% and biliary bile acid, phospholipid and cholesterol secretion to 5%, 11% and 19% of their initial values respectively. After 8 days of bile diversion, biliary cholesterol output and bile flow were at that same level, but bile acid output was increased 2-3-fold and phospholipid output was about 2 times lower. The total amount of cholesterol in the liver decreased after interruption of the EHC, which was mainly due to a decrease in the amount of cholesteryl ester. Plasma disappearance of LDL was not affected by interruption of the EHC. Biliary secretion of LDL-derived radioactivity occurred 2-4 times faster in chronically interrupted rats as compared with the excretion immediately after interruption of the EHC. Radioactivity was mainly in the form of bile acids under both conditions. This study demonstrates the very rapid changes that occur in cholesterol metabolism and biliary lipid composition after interruption of the EHC. These changes must be taken into account in studies concerning hepatic metabolism of lipoprotein cholesterol and subsequent secretion into bile.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Manya Warrier ◽  
Stepahie Marshall ◽  
Allison McDaniel ◽  
Martha Wilson ◽  
Amanda Brown ◽  
...  

Recent studies have revealed a novel route for cholesterol disposal through intestine known as transintestinal cholesterol efflux (TICE) that significantly contributes to fecal neutral sterol loss. This pathway is an integral part of reverse cholesterol transport (RCT), yet major mechanisms regulating TICE are not well understood. Using an unbiased transcriptional profiling approach in mouse models of augmented TICE, we found that hepatic expression of the enzyme Flavin monoxygenase 3 (FMO3) was dramatically repressed. At the same time we identified this enzyme through transcriptional profiling, it was reported that plasma levels of its product trimethylamineoxide (TMAO) are highly predictive of atheroslcerosis in humans, and TMAO is proatherogenic in mice. To further understand FMO3’s role as a regulator of cholesterol metabolism we used antisense oligonucleotides (ASO) to knockdown FMO3 expression in mouse liver in C57BL/6 mice fed either low (0.02%) or high (0.2%) levels of dietary cholesterol. As expected, FMO3 knockdown (>90% knockdown in the liver) increased the TMA/TMAO ratio in plasma more than 3-fold. Interestingly, knockdown of FMO biliary cholesterol levels were reduced by 60%, whereas fecal cholesterol loss was quite normal in FMO3 ASO treated mice fed a high cholesterol diet, which phenocopies a previously described mouse model where TICE predominates (NPC1L1-liver transgenic mice). ASO-mediated knockdown of FMO3 also unexpectedly reduced hepatic cholesteryl ester (CE) storage by 70% in mice fed 0.2% cholesterol. In parallel, knockdown of FMO3 reduces plasma VLDL cholesterol levels and the secretion rate of VLDL cholesteryl ester, but not triacylglycerol in cholesterol fed mice. FMO3 knockdown also reduced the hepatic expression of several liver X receptor (LXR) target genes, while increasing expression of genes involved in cholesterol synthesis. Collectively, these studies have identified FMO3 as a novel regulator of hepatic cholesterol metabolism and TICE. Given that plasma levels of FMO3’s product (TMAO) are strongly associated with atherosclerosis development in humans, and production of TMAO promotes atherosclerosis in mice, these studies have important implications for future cardiovascular drug discovery.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jaerin Lee ◽  
Soojin Lee ◽  
Mak-Soon Lee ◽  
Yoonjin Lee ◽  
Jiyeon Kim ◽  
...  

Abstract Objectives The objective of this study is to investigate the effects of high hydrostatic pressure (HHP) extract of mulberry fruit on the regulation of hepatic cholesterol metabolism in high-cholesterol diet fed rats. Methods Male Sprague-Dawley rats(6-week-old) were randomly divided into 5 groups, and fed with a normal diet (NOR), High cholesterol diet (HC), HC supplemented with 0.4% mulberry (ML) or 0.8% mulberry (MH) and HC treated with statin (ST) for 4 weeks. Results The HHP extract of mulberry fruit did not affect body weight gain and food intake and reduced the serum and liver lipids in the mulberry supplemented groups (ML, MH). In this study, we found that the HHP extract of mulberry fruit changed the level of genes involved in hepatic cholesterol metabolism. In the MH group, the mRNA levels of apolipoprotein A-1 (apoA-1), ATP-binding cassette transporter A1 (ABCA1) and lecithin-cholesterol acyltransferase (LCAT), which are involved in hepatic HDL biogenesis, were significantly increased by 1.80-, 1.77- and 2.65-fold, respectively, compared with the HC group. The MH group also significantly upregulated mRNA levels of cholesterol efflux related gene such as the liver X receptor α (LXRα), ATP-binding cassette protein G5 (ABCG5) and ATP-binding cassette protein G8 (ABCG8) compared to the HC group in the liver tissue. ABCG5 and ABCG8 expression levels of the MH group were also higher than those of the ST group. The mRNA level of cholesterol 7a-hydroxylase (CYP7A1), which is bile acid synthetic rate-limiting enzyme was higher in the MH group than that of the HC group. Furthermore, the immunohistochemical staining intensity became evident for CYP7A1 in liver of the MH group. Conclusions These results suggest at least partial involvement of HDL cholesterol synthesis, cholesterol efflux and bile acid synthesis in HHP extract of mulberry fruit mediated beneficial effects on hepatic cholesterol metabolism. Funding Sources None.


2018 ◽  
Vol 148 (5) ◽  
pp. 702-711 ◽  
Author(s):  
Kelly E Mercer ◽  
Sudeepa Bhattacharyya ◽  
Maria Elena Diaz-Rubio ◽  
Brian D Piccolo ◽  
Lindsay M Pack ◽  
...  

Abstract Background During the postnatal feeding period, formula-fed infants have higher cholesterol synthesis rates and lower circulating cholesterol concentrations than their breastfed counterparts. Although this disparity has been attributed to the uniformly low dietary cholesterol content of typical infant formulas, little is known of the underlying mechanisms associated with this altered cholesterol metabolism phenotype. Objective We aimed to determine the molecular etiology of diet-associated changes in early-life cholesterol metabolism with the use of a postnatal piglet feeding model. Methods Two-day-old male and female White-Dutch Landrace piglets were fed either sow milk (Sow group) or dairy-based (Milk group; Similac Advance powder) or soy-based (Soy group; Emfamil Prosobee Lipil powder) infant formulas until day 21. In addition to measuring serum cholesterol concentrations, hepatic and intestinal genes involved in enterohepatic circulation of cholesterol and bile acids were analyzed by real-time reverse-transcriptase polymerase chain reaction and Western blot. Bile acid concentrations were measured by liquid chromatography–mass spectrometry in serum, liver, and feces. Results Compared with the Sow group, hepatic cholesterol 7α hydroxylase (CYP7A1) protein expression was 3-fold higher in the Milk group (P < 0.05) and expression was 10-fold higher in the Soy group compared with the Milk group (P < 0.05). Likewise, fecal bile acid concentrations were 3-fold higher in the Soy group compared with the Milk group (P < 0.05). Intestinal mRNA expression of fibroblast factor 19 (Fgf19) was reduced in the Milk and Soy groups, corresponding to 54% and 67% decreases compared with the Sow group. In the Soy group, small heterodimer protein (SHP) protein expression was 30% lower compared with the Sow group (P < 0.05). Conclusions These results indicate that formula feeding leads to increased CYP7A1 protein expression and fecal bile acid loss in neonatal piglets, and this outcome is linked to reduced efficacy in inhibiting CYP7A1 expression through FGF19 and SHP transcriptional repression mechanisms.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1399
Author(s):  
Sisi Li ◽  
Shuyi Xu ◽  
Yang Zhao ◽  
Haichao Wang ◽  
Jie Feng

It is widely reported how betaine addition regulates lipid metabolism but how betaine affects cholesterol metabolism is still unknown. This study aimed to investigate the role of betaine in hepatic cholesterol metabolism of Sprague-Dawley rats. Rats were randomly allocated to four groups and fed with a basal diet or a high-fat diet with or without 1% betaine. The experiment lasted 28 days. The results showed that dietary betaine supplementation reduced the feed intake of rats with final weight unchanged. Serum low-density-lipoprotein cholesterol was increased with the high-fat diet. The high-fat diet promoted cholesterol synthesis and excretion by enhancing the HMG-CoA reductase and ABCG5/G8, respectively, which lead to a balance of hepatic cholesterol. Rats in betaine groups showed a higher level of hepatic total cholesterol. Dietary betaine addition enhanced cholesterol synthesis as well as conversion of bile acid from cholesterol by increasing the levels of HMGCR and CYP7A1. The high-fat diet decreased the level of bile salt export pump, while dietary betaine addition inhibited this decrease and promoted bile acid efflux and increased total bile acid levels in the intestine. In summary, dietary betaine addition promoted hepatic cholesterol metabolism, including cholesterol synthesis, conversion of bile acids, and bile acid export.


2000 ◽  
Vol 15 (8) ◽  
pp. 871-879 ◽  
Author(s):  
Jeffery L Smith ◽  
Paul D Roach ◽  
Leonie N Wittenberg ◽  
Michel Riottot ◽  
S. Praga Pillay ◽  
...  

2018 ◽  
Vol 314 (1) ◽  
pp. R58-R70 ◽  
Author(s):  
Tengfei Zhu ◽  
Geneviève Corraze ◽  
Elisabeth Plagnes-Juan ◽  
Edwige Quillet ◽  
Mathilde Dupont-Nivet ◽  
...  

When compared with fish meal and fish oil, plant ingredients differ not only in their protein content and amino acid and fatty acid profiles but are also devoid of cholesterol, the major component of cell membrane and precursor of several bioactive compounds. Based on these nutritional characteristics, plant-based diets can affect fish physiology and cholesterol metabolism. To investigate the mechanisms underlying cholesterol homeostasis, rainbow trout were fed from 1 g body wt for 6 mo with a totally plant-based diet (V), a marine diet (M), and a marine-restricted diet (MR), with feed intake adjusted to that of the V group. The expression of genes involved in cholesterol synthesis, esterification, excretion, bile acid synthesis, and cholesterol efflux was measured in liver. Results showed that genes involved in cholesterol synthesis were upregulated in trout fed the V diet, whereas expression of genes related to bile acid synthesis ( cyp7a1) and cholesterol elimination ( abcg8) were reduced. Feeding trout the V diet also enhanced the expression of srebp-2 while reducing that of lxrα and miR-223. Overall, these data suggested that rainbow trout coped with the altered nutritional characteristics and absence of dietary cholesterol supply by increasing cholesterol synthesis and limiting cholesterol efflux through molecular mechanisms involving at least srebp-2, lxrα, and miR-223. However, plasma and body cholesterol levels in trout fed the V diet were lower than in fish fed the M diet, raising the question of the role of cholesterol in the negative effect of plant-based diet on growth.


Sign in / Sign up

Export Citation Format

Share Document