Numerical simulations of collinear finite amplitude steady-state resonant waves in deep water

2020 ◽  
Vol 212 ◽  
pp. 107703
Author(s):  
Zhiyong Yan ◽  
Zeng Liu ◽  
Ye Li
2014 ◽  
Vol 742 ◽  
pp. 664-700 ◽  
Author(s):  
Zeng Liu ◽  
Shi-Jun Liao

AbstractThe steady-state resonance of multiple surface gravity waves in deep water was investigated in detail to extend the existing results due to Liao (Commun. Nonlinear Sci. Numer. Simul., vol. 16, 2011, pp. 1274–1303) and Xu et al. (J. Fluid Mech., vol. 710, 2012, pp. 379–418) on steady-state resonance from a quartet to more general and coupled resonant quartets, together with higher-order resonant interactions. The exact nonlinear wave equations are solved without assumptions on the existence of small physical parameters. Multiple steady-state resonant waves are obtained for all the considered cases, and it is found that the number of multiple solutions tends to increase when more wave components are involved in the resonance sets. The topology of wave energy distribution in the parameter space is analysed, and it is found that the steady-state resonant waves indeed form a continuum in the parameter space. The significant roles of the near-resonance and nonlinearity were also revealed. It is found that all of the near-resonant components as a whole contain more and more wave energy, as the wave patterns tend from two dimensions to one dimension, or as the nonlinearity of the steady-state resonant wave system increases. In addition, the linear stability of the steady-state resonant waves is analysed. It is found that the steady-state resonant waves are stable, as long as the disturbance does not resonate with any components of the basic wave. All of these findings are helpful to enrich and deepen our understanding about resonant gravity waves.


2021 ◽  
Vol 915 ◽  
Author(s):  
Xiaoyan Yang ◽  
Frederic Dias ◽  
Zeng Liu ◽  
Shijun Liao

Abstract


1991 ◽  
Vol 225 ◽  
pp. 423-444 ◽  
Author(s):  
R. Akhavan ◽  
R. D. Kamm ◽  
A. H. Shapiro

The stability of oscillatory channel flow to different classes of infinitesimal and finite-amplitude two- and three-dimensional disturbances has been investigated by direct numerical simulations of the Navier–Stokes equations using spectral techniques. All infinitesimal disturbances were found to decay monotonically to a periodic steady state, in agreement with earlier Floquet theory calculations. However, before reaching this periodic steady state an infinitesimal disturbance introduced in the boundary layer was seen to experience transient growth in accordance with the predictions of quasi-steady theories for the least stable eigenmodes of the Orr–Sommerfeld equation for instantaneous ‘frozen’ profiles. The reason why this growth is not sustained in the periodic steady state is explained. Two-dimensional infinitesimal disturbances reaching finite amplitudes were found to saturate in an ordered state of two-dimensional quasi-equilibrium waves that decayed on viscous timescales. No finite-amplitude equilibrium waves were found in our cursory study. The secondary instability of these two-dimensional finite-amplitude quasi-equilibrium states to infinitesimal three-dimensional perturbations predicts transitional Reynolds numbers and turbulent flow structures in agreement with experiments.


2016 ◽  
Vol 794 ◽  
pp. 175-199 ◽  
Author(s):  
Shijun Liao ◽  
Dali Xu ◽  
Michael Stiassnie

The steady-state nearly resonant water waves with time-independent spectrum in deep water are obtained from the full wave equations for inviscid, incompressible gravity waves in the absence of surface tension by means of a analytic approximation approach based on the homotopy analysis method (HAM). Our strategy is to mathematically transfer the steady-state nearly resonant wave problem into the steady-state exactly resonant ones. By means of choosing a generalized auxiliary linear operator that is a little different from the linear part of the original wave equations, the small divisor, which is unavoidable for nearly resonant waves in the frame of perturbation methods, is avoided, or moved far away from low wave frequency to rather high wave frequency with physically negligible wave energy. It is found that the steady-state nearly resonant waves have nothing fundamentally different from the steady-state exactly resonant ones, from physical and numerical viewpoints. In addition, the validity of this HAM-based analytic approximation approach for the full wave equations in deep water is numerically verified by means of the Zakharov’s equation. A thought experiment is discussed, which suggests that the essence of the so-called ‘wave resonance’ should be reconsidered carefully from both of physical and mathematical viewpoints.


2019 ◽  
Vol 867 ◽  
pp. 348-373 ◽  
Author(s):  
Z. Liu ◽  
D. Xie

Finite-amplitude wave groups with multiple near-resonances are investigated to extend the existing results due to Liu et al. (J. Fluid Mech., vol. 835, 2018, pp. 624–653) from steady-state wave groups in deep water to steady-state wave groups in finite water depth. The slow convergence rate of the series solution in the homotopy analysis method and extra unpredictable high-frequency components in finite water depth make it hard to obtain finite-amplitude wave groups accurately. To overcome these difficulties, a solution procedure that combines the homotopy analysis method-based analytical approach and Galerkin method-based numerical approaches has been used. For weakly nonlinear wave groups, the continuum of steady-state resonance from deep water to finite water depth is established. As nonlinearity increases, the frequency bands broaden and more steady-state wave groups are obtained. Finite-amplitude wave groups with steepness no less than $0.20$ are obtained and the resonant sets configuration of steady-state wave groups are analysed in different water depths. For waves in deep water, the majority of non-trivial components appear around the primary ones due to four-wave, six-wave, eight-wave or even ten-wave resonant interactions. The dominant role of four-wave resonant interactions for steady-state wave groups in deep water is demonstrated. For waves in finite water depth, additional non-trivial high-frequency components appear in the spectra due to three-wave, four-wave, five-wave or even six-wave resonant interactions with the components around the primary ones. The amplitude of these high-frequency components increases further as the water depth decreases. Resonances composed by components only around the primary ones are suppressed while resonances composed by components around the primary ones and from the high-frequency domain are enhanced. The spectrum of steady-state resonant wave groups changes with the water depth and the significant role of three-wave resonant interactions in finite water depth is demonstrated.


2017 ◽  
Vol 835 ◽  
pp. 624-653 ◽  
Author(s):  
Z. Liu ◽  
D. L. Xu ◽  
S. J. Liao

In this paper, finite amplitude steady-state wave groups with multiple nearly resonant interactions in deep water are investigated theoretically. The nonlinear water wave equations are solved by the homotopy analysis method (HAM), which imposes no constraint on either the number or the amplitude of the wave components, to resolve the small-divisor problems caused by near resonances. A new kind of auxiliary linear operator in the framework of the HAM is proposed to transform the small divisors associated with the non-trivial nearly resonant components to singularities associated with the exactly resonant ones. Primary components, exactly resonant components together with nearly resonant components are considered as the initial non-trivial components, since all of them are homogeneous solutions to the auxiliary linear operator. For wave groups with weak nonlinearity, the energy transfer between nearby nearly resonant components is remarkable. As the nonlinearity increases, the number of steady-state wave groups increases as more components join the near resonance. This indicates that the probability of existence of steady-state resonant waves increases with the nonlinearity of wave groups. The frequency band broadens and spectral asymmetry becomes more and more pronounced. The amplitude of each component may either increase or decrease with the nonlinearity of wave groups, while the amplitude of the whole wave group increases continuously and finite amplitude wave groups are obtained. This work shows the wide existence of steady-state waves when multiple nearly resonant interactions are considered.


1996 ◽  
Vol 317 ◽  
pp. 111-127 ◽  
Author(s):  
P. G. Daniels ◽  
M. Weinstein

This paper considers the development of finite-amplitude patterns of convection in rectangular-planform containers. The horizontal dimensions of the container are assumed to be large compared with the critical wavelength of the motion. An interaction between rolls parallel and perpendicular to the lateral boundaries is modelled by a coupled pair of nonlinear amplitude equations together with appropriate conditions on the four lateral boundaries. At Rayleigh numbers above a critical value a steady-state solution is established with rolls parallel to the shorter lateral sides, consistent with the predictions of linear theory. At a second critical value this solution becomes unstable to cross-rolls near the shorter sides and a new steady state evolves. This consists of the primary roll pattern together with regions near the shorter sides where there is a combination of rolls parallel and perpendicular to the boundary.Analytical and numerical methods are used to describe both the evolution and steady-state structure of the solution, and a comparison is made with the results of full numerical simulations and experiments.


2016 ◽  
Vol 44 (3) ◽  
pp. 174-190 ◽  
Author(s):  
Mario A. Garcia ◽  
Michael Kaliske ◽  
Jin Wang ◽  
Grama Bhashyam

ABSTRACT Rolling contact is an important aspect in tire design, and reliable numerical simulations are required in order to improve the tire layout, performance, and safety. This includes the consideration of as many significant characteristics of the materials as possible. An example is found in the nonlinear and inelastic properties of the rubber compounds. For numerical simulations of tires, steady state rolling is an efficient alternative to standard transient analyses, and this work makes use of an Arbitrary Lagrangian Eulerian (ALE) formulation for the computation of the inertia contribution. Since the reference configuration is neither attached to the material nor fixed in space, handling history variables of inelastic materials becomes a complex task. A standard viscoelastic material approach is implemented. In the inelastic steady state rolling case, one location in the cross-section depends on all material locations on its circumferential ring. A consistent linearization is formulated taking into account the contribution of all finite elements connected in the hoop direction. As an outcome of this approach, the number of nonzero values in the general stiffness matrix increases, producing a more populated matrix that has to be solved. This implementation is done in the commercial finite element code ANSYS. Numerical results confirm the reliability and capabilities of the linearization for the steady state viscoelastic material formulation. A discussion on the results obtained, important remarks, and an outlook on further research conclude this work.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feifan Zhang ◽  
Wenjiao Zhou ◽  
Lei Yao ◽  
Xuanwen Wu ◽  
Huayong Zhang

In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried out on the formation of spatiotemporal patterns. Simulation results show that the diffusion of phytoplankton and nutrients can induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained and are compared with real observed patterns.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 205
Author(s):  
Dan Lucas ◽  
Marc Perlin ◽  
Dian-Yong Liu ◽  
Shane Walsh ◽  
Rossen Ivanov ◽  
...  

In this work we consider the problem of finding the simplest arrangement of resonant deep-water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wavevectors K1+K2=K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wavepackets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction in a symmetric configuration. Numerical simulations of the governing equations in natural variables using pseudospectral methods require the inclusion of up to 6-wave interactions, which imposes a strong dealiasing cut-off in order to properly resolve the evolving waves. We study the resonance numerically by looking at a target mode in the base triad and showing that the energy transfer to this mode is more efficient when the system is close to satisfying the resonant conditions. We first look at encountering plane waves with base frequencies in the range 1.32–2.35 Hz and steepnesses below 0.1, and show that the time evolution of the target mode’s energy is dramatically changed at the resonance. We then look at a scenario that is closer to experiments: Encountering wavepackets in a 400-m long numerical tank, where the interaction time is reduced with respect to the plane-wave case but the resonance is still observed; by mimicking a probe measurement of surface elevation we obtain efficiencies of up to 10% in frequency space after including near-resonant contributions. Finally, we perform preliminary experiments of encountering wavepackets in a 35-m long tank, which seem to show that the resonance exists physically. The measured efficiencies via probe measurements of surface elevation are relatively small, indicating that a finer search is needed along with longer wave flumes with much larger amplitudes and lower frequency waves. A further analysis of phases generated from probe data via the analytic signal approach (using the Hilbert transform) shows a strong triad phase synchronisation at the resonance, thus providing independent experimental evidence of the resonance.


Sign in / Sign up

Export Citation Format

Share Document