Steady-state resonance of multiple wave interactions in deep water

2014 ◽  
Vol 742 ◽  
pp. 664-700 ◽  
Author(s):  
Zeng Liu ◽  
Shi-Jun Liao

AbstractThe steady-state resonance of multiple surface gravity waves in deep water was investigated in detail to extend the existing results due to Liao (Commun. Nonlinear Sci. Numer. Simul., vol. 16, 2011, pp. 1274–1303) and Xu et al. (J. Fluid Mech., vol. 710, 2012, pp. 379–418) on steady-state resonance from a quartet to more general and coupled resonant quartets, together with higher-order resonant interactions. The exact nonlinear wave equations are solved without assumptions on the existence of small physical parameters. Multiple steady-state resonant waves are obtained for all the considered cases, and it is found that the number of multiple solutions tends to increase when more wave components are involved in the resonance sets. The topology of wave energy distribution in the parameter space is analysed, and it is found that the steady-state resonant waves indeed form a continuum in the parameter space. The significant roles of the near-resonance and nonlinearity were also revealed. It is found that all of the near-resonant components as a whole contain more and more wave energy, as the wave patterns tend from two dimensions to one dimension, or as the nonlinearity of the steady-state resonant wave system increases. In addition, the linear stability of the steady-state resonant waves is analysed. It is found that the steady-state resonant waves are stable, as long as the disturbance does not resonate with any components of the basic wave. All of these findings are helpful to enrich and deepen our understanding about resonant gravity waves.

2016 ◽  
Vol 794 ◽  
pp. 175-199 ◽  
Author(s):  
Shijun Liao ◽  
Dali Xu ◽  
Michael Stiassnie

The steady-state nearly resonant water waves with time-independent spectrum in deep water are obtained from the full wave equations for inviscid, incompressible gravity waves in the absence of surface tension by means of a analytic approximation approach based on the homotopy analysis method (HAM). Our strategy is to mathematically transfer the steady-state nearly resonant wave problem into the steady-state exactly resonant ones. By means of choosing a generalized auxiliary linear operator that is a little different from the linear part of the original wave equations, the small divisor, which is unavoidable for nearly resonant waves in the frame of perturbation methods, is avoided, or moved far away from low wave frequency to rather high wave frequency with physically negligible wave energy. It is found that the steady-state nearly resonant waves have nothing fundamentally different from the steady-state exactly resonant ones, from physical and numerical viewpoints. In addition, the validity of this HAM-based analytic approximation approach for the full wave equations in deep water is numerically verified by means of the Zakharov’s equation. A thought experiment is discussed, which suggests that the essence of the so-called ‘wave resonance’ should be reconsidered carefully from both of physical and mathematical viewpoints.


2012 ◽  
Vol 710 ◽  
pp. 379-418 ◽  
Author(s):  
Dali Xu ◽  
Zhiliang Lin ◽  
Shijun Liao ◽  
Michael Stiassnie

AbstractThe steady-state fully resonant wave system, consisting of two progressive primary waves in finite water depth and all components due to nonlinear interaction, is investigated in detail by means of analytically solving the fully nonlinear wave equations as a nonlinear boundary-value problem. It is found that multiple steady-state fully resonant waves exist in some cases which have no exchange of wave energy at all, so that the energy spectrum is time-independent. Further, the steady-state resonant wave component may contain only a small proportion of the wave energy. However, even in these cases, there usually exist time-dependent periodic exchanges of wave energy around the time-independent energy spectrum corresponding to such a steady-state fully resonant wave, since it is hard to be exactly in such a balanced state in practice. This view serves to deepen and enrich our understanding of the resonance of gravity waves.


1997 ◽  
Vol 352 ◽  
pp. 359-373 ◽  
Author(s):  
KARSTEN TRULSEN ◽  
KRISTIAN B. DYSTHE

The conservative evolution of weakly nonlinear narrow-banded gravity waves in deep water is investigated numerically with a modified nonlinear Schrödinger equation, for application to wide wave tanks. When the evolution is constrained to two dimensions, no permanent shift of the peak of the spectrum is observed. In three dimensions, allowing for oblique sideband perturbations, the peak of the spectrum is permanently downshifted. Dissipation or wave breaking may therefore not be necessary to produce a permanent downshift. The emergence of a standing wave across the tank is also predicted.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 205
Author(s):  
Dan Lucas ◽  
Marc Perlin ◽  
Dian-Yong Liu ◽  
Shane Walsh ◽  
Rossen Ivanov ◽  
...  

In this work we consider the problem of finding the simplest arrangement of resonant deep-water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wavevectors K1+K2=K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wavepackets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction in a symmetric configuration. Numerical simulations of the governing equations in natural variables using pseudospectral methods require the inclusion of up to 6-wave interactions, which imposes a strong dealiasing cut-off in order to properly resolve the evolving waves. We study the resonance numerically by looking at a target mode in the base triad and showing that the energy transfer to this mode is more efficient when the system is close to satisfying the resonant conditions. We first look at encountering plane waves with base frequencies in the range 1.32–2.35 Hz and steepnesses below 0.1, and show that the time evolution of the target mode’s energy is dramatically changed at the resonance. We then look at a scenario that is closer to experiments: Encountering wavepackets in a 400-m long numerical tank, where the interaction time is reduced with respect to the plane-wave case but the resonance is still observed; by mimicking a probe measurement of surface elevation we obtain efficiencies of up to 10% in frequency space after including near-resonant contributions. Finally, we perform preliminary experiments of encountering wavepackets in a 35-m long tank, which seem to show that the resonance exists physically. The measured efficiencies via probe measurements of surface elevation are relatively small, indicating that a finer search is needed along with longer wave flumes with much larger amplitudes and lower frequency waves. A further analysis of phases generated from probe data via the analytic signal approach (using the Hilbert transform) shows a strong triad phase synchronisation at the resonance, thus providing independent experimental evidence of the resonance.


2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


Modern applications of water-wave studies, as well as some recent theoretical developments, have shown the need for a systematic and accurate calculation of the characteristics of steady, progressive gravity waves of finite amplitude in water of arbitrary uniform depth. In this paper the speed, momentum, energy and other integral properties are calculated accurately by means of series expansions in terms of a perturbation parameter whose range is known precisely and encompasses waves from the lowest to the highest possible. The series are extended to high order and summed with Padé approximants. For any given wavelength and depth it is found that the highest wave is not the fastest. Moreover the energy, momentum and their fluxes are found to be greatest for waves lower than the highest. This confirms and extends the results found previously for solitary and deep-water waves. By calculating the profile of deep-water waves we show that the profile of the almost-steepest wave, which has a sharp curvature at the crest, intersects that of a slightly less-steep wave near the crest and hence is lower over most of the wavelength. An integration along the wave profile cross-checks the Padé-approximant results and confirms the intermediate energy maximum. Values of the speed, energy and other integral properties are tabulated in the appendix for the complete range of wave steepnesses and for various ratios of depth to wavelength, from deep to very shallow water.


2010 ◽  
Vol 67 (3) ◽  
pp. 694-712 ◽  
Author(s):  
Ji-Young Han ◽  
Jong-Jin Baik

Abstract Convectively forced mesoscale flows in a shear flow with a critical level are theoretically investigated by obtaining analytic solutions for a hydrostatic, nonrotating, inviscid, Boussinesq airflow system. The response to surface pulse heating shows that near the center of the moving mode, the magnitude of the vertical velocity becomes constant after some time, whereas the magnitudes of the vertical displacement and perturbation horizontal velocity increase linearly with time. It is confirmed from the solutions obtained in present and previous studies that this result is valid regardless of the basic-state wind profile and dimension. The response to 3D finite-depth steady heating representing latent heating due to cumulus convection shows that, unlike in two dimensions, a low-level updraft that is necessary to sustain deep convection always occurs at the heating center regardless of the intensity of vertical wind shear and the heating depth. For deep heating across a critical level, little change occurs in the perturbation field below the critical level, although the heating top height increases. This is because downward-propagating gravity waves induced by the heating above, but not near, the critical level can hardly affect the flow response field below the critical level. When the basic-state wind backs with height, the vertex of V-shaped perturbations above the heating top points to a direction rotated a little clockwise from the basic-state wind direction. This is because the V-shaped perturbations above the heating top is induced by upward-propagating gravity waves that have passed through the layer below where the basic-state wind direction is clockwise relative to that above.


1991 ◽  
Vol 37 (126) ◽  
pp. 261-269 ◽  
Author(s):  
Heinz Blatter ◽  
Kolumban Hutter

AbstractEnglacial temperature measurements in Arctic valley glaciers suggest in the ablation zone the existence of a basal layer of temperate ice lying below the bulk of cold ice. For such a polythermal glacier, a mathematical model is presented that calculates the temperature in the cold part and the position of the cold-temperate transition surface (CTS). The model is based on the continuum hypothesis for ice and the ice-water mixture, and on the conservation laws for moisture and energy. Temperate ice is treated as a binary mixture of ice and water at the melting point of pure ice. Boundary and transition conditions are formulated for the free surface, the base and the intraglacial cold-temperate transition surface. The model is reduced to two dimensions (plane flow) and the shallow-ice approximation is invoked. The limit of very small moisture diffusivity is analysed by using a stationary model with further reduction to one dimension (parallel-sided slab), thus providing the means of a consistent formulation of the transition conditions for moisture and heat flux through the CTS at the limit of negligibly small moisture diffusion.The application of the model to the steady-state Laika Glacier, using present-day conditions, results in a wholly cold glacier with a cold sole, in sharp contrast to observations. The present polythermal state of this glacier is suspected to be a remnant of the varying climatic conditions and glacier geometry during the past few centuries. Steady-state solutions representing apolythermalstructure can indeed be found within a range of prescribed conditions which are judged to be realistic for Laika Glacier at the last maximum extent of the glacier.


2020 ◽  
Vol 5 (8) ◽  
Author(s):  
Guillaume Michel ◽  
Félicien Bonnefoy ◽  
Guillaume Ducrozet ◽  
Gaurav Prabhudesai ◽  
Annette Cazaubiel ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document