scholarly journals Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells

2017 ◽  
Vol 4 ◽  
pp. 137-148 ◽  
Author(s):  
Kai-Hsin Chang ◽  
Sarah E. Smith ◽  
Timothy Sullivan ◽  
Kai Chen ◽  
Qianhe Zhou ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2898-2898
Author(s):  
Ingmar Bruns ◽  
Ron-Patrick Cadeddu ◽  
Ines Brückmann ◽  
Sebastian Buest ◽  
Julia Fröbel ◽  
...  

Abstract Abstract 2898 Multiple myeloma (MM) patients often suffer from hematopoietic impairment already at the time of diagnosis with anemia as the prevailing symptom. Given the overt affection of the bone marrow in MM patients by the invasion of malignant plasma cells, we hypothesized that hematopoietic insufficiency in these patients may originate from a functional impairment of hematopoietic stem and progenitor cells. Quantitative analysis of BM CD34+ HSPC cell subsets from MM patients and age-matched healthy donors showed a significant decline of all HSPC subsets including hematopoietic stem cells, common myeloid and lymphoid progenitors, granulocyte-macrophage progenitors and megakaryocyte-erythrocyte progenitors in MM patients. The greatest diminution was observed in megakaryocyte-erythrocyte progenitors (MEP) which were 4.9-fold reduced in comparison to healthy donors. Transcriptional analyses of CD34+ HSPC subsets revealed a significant deregulation of signaling pathways that was particularly striking for TGF beta signaling and suggested increased activation of this signaling pathway. Immunhistochemical staining of phosphorylated smad2, the downstream mediator of TGF receptor I kinase activation, in bone marrow sections and immunoblotting of purified CD34+ HSPC of MM patients confirmed the overactivation of TGF beta signaling. On a functional level, we observed significantly reduced long-term self-renewal and clonogenic growth, particularly of the erythroid precursors BFU-E and CFU-E, in CD34+ HSPC of MM patients which could be restored by inhibition of TGF beta signaling. Proliferation and cell cycle analyses revealed a significantly decreased proliferation activity in CD34+ HSPC and, particularly, MEP. Again, this was reversible after inhibition of TGF beta signaling. In addition, the transcriptional analyses showed disturbance of pathways involved in the adhesion and migration of HSPC and the gene encoding for the principal hyaluronan receptor CD44 throughout the HSPC subsets. This was corroborated by immunofluorescence imaging of CD44 on HSPC subsets showing a marked downregulation in the patients' cells. In line, the adhesion of CD34+ HSPC subsets to hyaluronan and their migration towards SDF-1 was significantly inhibited. Subsequent xenotransplantation of CD34+ HSPC from MM patients and healthy donors into myeloma-free recipients revealed even increased long-term engraftment of CD34+ HSPC obtained from MM patients and normal differentiation capacities suggesting that the observed functional alterations in fact depend on the MM-related bone marrow microenvironment. Our data show that hematopoietic impairment in patients with multiple myeloma originates, at least in part, from functional alterations of hematopoietic stem and progenitor cells. These alterations seem to depend on the disease-related changes of the bone marrow microenvironment. Currently, experiments are underway to elucidate in more detail the role of the microenvironment and the responsible structures for the impairment of HSPC in MM patients. These data will be presented. Disclosures: Kobbe: Celgene: Consultancy, Research Funding; Ortho Biotec: Consultancy.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 5002-5012 ◽  
Author(s):  
Amy H. Yin ◽  
Sheri Miraglia ◽  
Esmail D. Zanjani ◽  
Graca Almeida-Porada ◽  
Makio Ogawa ◽  
...  

Abstract AC133 is one of a new panel of murine hybridoma lines producing monoclonal IgG antibodies (mAbs) to a novel stem cell glycoprotein antigen with a molecular weight of 120 kD. AC133 antigen is selectively expressed on CD34bright hematopoietic stem and progenitor cells (progenitors) derived from human fetal liver and bone marrow, and blood. It is not detectable on other blood cells, cultured human umbilical vein endothelial cells (HUVECs), fibroblast cell lines, or the myeloid leukemia cell line KG1a by standard flow cytometric procedures. All of the noncommitted CD34+ cell population, as well as the majority of CD34+ cells committed to the granulocytic/monocytic pathway, are stained with AC133 antibody. In vitro clonogenicity assays have demonstrated that the CD34+AC133+ double-positive population from adult bone marrow contains the majority of the CFU-GM, a proportion of the CFU-Mix, and a minor population of BFU-E. The CD34dim and AC133− population has been shown to contain the remaining progenitor cells. AC133-selected cells engraft successfully in a fetal sheep transplantation model, and human cells harvested from chimeric fetal sheep bone marrow have been shown to successfully engraft secondary recipients, providing evidence for the long-term repopulating potential of AC133+ cells. A cDNA coding for AC133 antigen has been isolated, which codes for a polypeptide consisting of 865 amino acids (aa) with a predicted size of 97 kD. This antigen is modeled as a 5-transmembrane molecule, a structure that is novel among known cell surface structures. AC133 antibody provides an alternative to CD34 for the selection and characterization of cells necessary for both short- and long-term engraftment, in transplant situations, for studies of ex vivo expansion strategies, and for gene therapy.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiao Chai ◽  
Deguan Li ◽  
Xiaoli Cao ◽  
Yuchen Zhang ◽  
Juan Mu ◽  
...  

Abstract Iron overload, caused by hereditary hemochromatosis or repeated blood transfusions in some diseases, such as beta thalassemia, bone marrow failure and myelodysplastic syndrome, can significantly induce injured bone marrow (BM) function as well as parenchyma organ dysfunctions. However, the effect of iron overload and its mechanism remain elusive. In this study, we investigated the effects of iron overload on the hematopoietic stem and progenitor cells (HSPCs) from a mouse model. Our results showed that iron overload markedly decreased the ratio and clonogenic function of murine HSPCs by the elevation of reactive oxygen species (ROS). This finding is supported by the results of NAC or DFX treatment, which reduced ROS level by inhibiting NOX4 and p38MAPK and improved the long-term and multi-lineage engrafment of iron overload HSCs after transplantation. Therefore, all of these data demonstrate that iron overload injures the hematopoiesis of BM by enhancing ROS through NOX4 and p38MAPK. This will be helpful for the treatment of iron overload in patients with hematopoietic dysfunction.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3503-3510 ◽  
Author(s):  
Hong Qian ◽  
Karl Tryggvason ◽  
Sten Eirik Jacobsen ◽  
Marja Ekblom

The laminin receptor integrin α6 chain is ubiquitously expressed in human and mouse hematopoietic stem and progenitor cells. We have studied its role for homing of stem and progenitor cells to mouse hematopoietic tissues in vivo. A function-blocking anti–integrin α6 antibody significantly reduced progenitor cell homing to bone marrow (BM) of lethally irradiated mice, with a corresponding retention of progenitors in blood. Remarkably, the anti–integrin α6 antibody profoundly inhibited BM homing of long-term multilineage engrafting stem cells, studied by competitive repopulation assay and analysis of donor-derived lymphocytes and myeloid cells in blood 16 weeks after transplantation. A similar profound inhibition of long-term stem cell homing was obtained by using a function-blocking antibody against α4 integrin, studied in parallel. Furthermore, the anti–integrin α6 and α4 antibodies synergistically inhibited homing of short-term repopulating stem cells. Intravenous injection of anti–integrin α6 antibodies, in contrast to antibodies against α4 integrin, did not mobilize progenitors or enhance cytokine-induced mobilization by G-CSF. Our results provide the first evidence for a distinct functional role of integrin α6 receptor during hematopoietic stem and progenitor cell homing and collaboration of α6 integrin with α4 integrin receptors during homing of short-term stem cells.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2292 ◽  
Author(s):  
Gajalakshmi Ramanathan ◽  
Brianna Craver-Hoover ◽  
Rebecca J. Arechavala ◽  
David A. Herman ◽  
Jane H. Chen ◽  
...  

Electronic cigarettes (E-cigs) generate nicotine containing aerosols for inhalation and have emerged as a popular tobacco product among adolescents and young adults, yet little is known about their health effects due to their relatively recent introduction. Few studies have assessed the long-term effects of inhaling E-cigarette smoke or vapor. Here, we show that two months of E-cigarette exposure causes suppression of bone marrow hematopoietic stem and progenitor cells (HSPCs). Specifically, the common myeloid progenitors and granulocyte-macrophage progenitors were decreased in E-cig exposed animals compared to air exposed mice. Competitive reconstitution in bone marrow transplants was not affected by two months of E-cig exposure. When air and E-cig exposed mice were challenged with an inflammatory stimulus using lipopolysaccharide (LPS), competitive fitness between the two groups was not significantly different. However, mice transplanted with bone marrow from E-cigarette plus LPS exposed mice had elevated monocytes in their peripheral blood at five months post-transplant indicating a myeloid bias similar to responses of aged hematopoietic stem cells (HSC) to an acute inflammatory challenge. We also investigated whether E-cigarette exposure enhances the selective advantage of hematopoietic cells with myeloid malignancy associated mutations. E-cigarette exposure for one month slightly increased JAK2V617F mutant cells in peripheral blood but did not have an impact on TET2−/− cells. Altogether, our findings reveal that chronic E-cigarette exposure for two months alters the bone marrow HSPC populations but does not affect HSC reconstitution in primary transplants.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5117-5117
Author(s):  
Valentina Giai ◽  
Elona Saraci ◽  
Eleonora Marzanati ◽  
Christian Scharenberg ◽  
Monica De Stefanis ◽  
...  

Abstract BACKGROUND: In the recent years, numerous studies based on multicolor flowcytometry have analyzed the different subpopulations of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) (Manz MG et al, PNAS 2002; Majeti R et al, Cell Stem Cell 2007): the common myeloid progenitors (CMPs: Lin-CD34+CD38+CD45RA-CD123+), the granulocyte-macrophage progenitors (GMPs: Lin-CD34+CD38+CD45RA+CD123+) and the megakaryocyte-erythroid progenitors (MEPs: Lin-CD34+CD38+CD45RA-CD123-) constitute the progenitor compartment, while the hematopoietic stem cells (HSCs: Lin-CD34+CD38- CD45RA-CD90+), the multipotent progenitors (MPPs: Lin-CD34+CD38- CD45RA-CD90-) and the lymphoid-myeloid multipotent progenitors (LMPPs: Lin-CD34+CD38- CD45RA+CD90-) represent the more immature HSPCs. In animal models, the progenitor compartment includes short-term repopulating cells, leading to the hematological recovery in the first 5 weeks after transplantation, whereas the stem cell compartment comprehends the long-term repopulation cells, responsible for the long-term hematological recovery. However, very little is known about the different subpopulations of HSPCs among peripheral blood (PB) CD34+ in basal state and after mobilization for harvest and transplantation. Our study was conducted to analyze PB CD34+ cells from healthy volunteers and from hematological patients during CD34+ cells mobilization. Our main aim was to understand if the proportions of different HSPCs among PB CD34+ cells were similar to those found in BM and whether the mobilizing regimens employed in chemo treated patients differently affected CD34+ cells subfractions in PB. METHODS: multicolor flowcytometry was used to analyze CD34+ cells from 4 BM samples and 9 PB samples from healthy volunteers and 32 PB samples from hematological patients prior CD34+ cells harvesting. RESULTS: Percentages of CD34+ cells subpopulations were different in basal PB compared to the BM: indeed, CMPs, GMPs and MEPs constituted respectively 27.6% ± 9.5, 23.8% ± 7.2 and 27.6% ± 16.2 of BM CD34+ cells and 47.8% ± 9.5, 10.3% ± 6.9 and 16.1% ± 7.6 of the total PB CD34+ cells. HSCs constituted 2.1% of BM and 1.5% of PB CD34+ cells. The differences between BM and circulating CMPs and GMPs were significant (p<0.005 and p<0.01). No differences in subpopulations proportions were shown comparing G-CSF mobilized and basal PB CD34+ cells. Interestingly, the 2 patients mobilized with AMD3100 (the inhibitory molecule for CXCR4) showed a higher percentage of GMPs (33.8% and 37.8% versus the average 16.3% ± 9.8 in G-CSF mobilized samples) and a lower fraction of CMPs (29.5% and 41.6% versus the average 58% ± 12 in G-CSF mobilized samples). In order to understand this result, we looked then at the CXCR4 mean fluorescence intensity among the progenitor subsets: GMPs showed significantly higher levels of this molecule compared to CMPs and MEPs. Regarding the mobilizing chemotherapy regimens, CMPs percentages were higher (61.1% versus 49.1%, p: 0.038) and GMPs’ were significantly lower (11.1% versus 27.6%, p<0.0001) in cyclophosphamide treated patients, compared to patients mobilized with other chemotherapy regimens. The percentage of HSCs did not significantly differ among bone marrow, unmobilized and mobilized PB CD34+ cells. Therefore, since an average collection of mobilized PB cells contains approximately one log more CD34+ cells than a BM harvest, a similarly higher amount of HSC are infused with mobilized CD34+ cell transplantation. A linear positive correlation between the number of mobilized CD34+ cells and the number of mobilized CMPs, GMPs, and MEPs was observed indicating that the proportions of different HSPCs did not significantly change among high- and low-mobilizers. There were no correlations between the number of mobilized subpopulations and leucocytes, hemoglobin and platelets levels. CONCLUSIONS: Our data displayed the heterogeneity of HSPC compartment between PB and BM. Many factors could contribute to this variegated scenario. These mechanisms comprehension can help us to choose the most suitable chemotherapy and cytokine administrations in order to improve clinical outcomes as infections complications, length of aplasia and transfusion requirements during an hematopoietic stem cell transplantation. Disclosures Palumbo: Bristol-Myers Squibb: Consultancy, Honoraria; Genmab A/S: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Janssen-Cilag: Consultancy, Honoraria; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria; Onyx Pharmaceuticals: Consultancy, Honoraria; Array BioPharma: Honoraria; Amgen: Consultancy, Honoraria; Sanofi: Honoraria. Boccadoro:Celgene: Honoraria; Janssen: Honoraria; Onyx: Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4789-4789
Author(s):  
Xuejun Zhu ◽  
Zhongfa Yang ◽  
Junling Wang ◽  
Alan G. Rosmarin

Abstract Abstract 4789 Dendritic cells (DCs) play key roles in mediating innate and acquired immune responses. DCs have a short half life in peripheral organs and are derived constitutively from bone marrow hematopoietic stem cells (HSCs) and Flt3+ progenitors. Cytokine signaling from Flt3 is crucial for stimulation of DC development. Previous studies demonstrated that injection of Flt3 ligand (Flt3L) in mouse caused a transient, but substantial increase in DC development. The effects of long-term activation of Flt3 signaling with physiological levels of Flt3L, however, have not yet been defined. Transgenic mice with constitutively activated Flt3 signaling were generated by replacing the Flt3 alleles with a mutant version Flt3ITD. Both mature DCs and DC progenitors increased modestly in Flt3ITD mice; both lymphoid and myeloid derived DCs were increased compared with wild type mice. Although the level of DCs in Flt3ITD mice did not reach the high levels in mice injected with Flt3L, the effect of Flt3ITD on DC development was consistent and long-lasting. Thus, activation of Flt3 signaling by different mechanisms led to distinct responses of bone marrow stem and progenitor cells for DC development. Flt3ITD mice provide a unique model to analyze DC differentiation from bone marrow stem and progenitor cells at physiological levels of Flt3L. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2933-2933
Author(s):  
Rkia El Kharrag ◽  
Kurt Berckmueller ◽  
Margaret Cui ◽  
Ravishankar Madhu ◽  
Anai M Perez ◽  
...  

Abstract Autologous hematopoietic stem cell (HSC) gene therapy has the potential to cure millions of patients suffering from hematological diseases and disorders. Recent HSCs gene therapy trials using CRISPR/Cas9 nucleases to treat sickle cell disease (SCD) have shown promising results paving the way for gene editing approaches for other diseases. However, current applications depend on expensive and rare GMP facilities for the manipulation of HSCs ex vivo. Consequently, this promising treatment option remains inaccessible to many patients especially in low- and middle-income settings. HSC-targeted in vivo delivery of gene therapy reagents could overcome this bottleneck and thereby enhance the portability and availability of gene therapy. Various kinds of nanoparticles (lipid, gold, polymer, etc.) are currently used to develop targeted ex vivo as well as in vivo gene therapy approaches. We have previously shown that poly (β-amino ester) (PBAE)-based nanoparticle (NP) formulations can be used to efficiently deliver mRNA into human T cells and umbilical cord blood-derived CD34 + hematopoietic stem and progenitor cells (HSPCs) (Moffet et al. 2017, Nature Communications). Here, we optimized our NP formulation to deliver mRNA into GCSF-mobilized adult human CD34 + HSPCs, a more clinically relevant and frequently used cell source for ex vivo and the primary target for in vivo gene therapy. Furthermore, we specifically focused on the evaluation of NP-mediated delivery of CRISPR/Cas9 gene editing reagents. The efficiency of our NP-mediated delivery of gene editing reagents was comprehensively tested in comparison to electroporation, the current experimental, pre-clinical as well as clinical standard for gene editing. Most important for the clinical translation of this technology, we defined quality control parameters for NPs, identified standards that can predict the editing efficiency, and established protocols to lyophilize and store formulated NPs for enhanced portability and future in vivo applications. Nanoformulations were loaded with Cas9 ribonucleoprotein (RNP) complexes to knock out CD33, an established strategy in our lab to protect HSCs from anti-CD33 targeted acute myeloid leukemia (AML) immunotherapy (Humbert et al. 2019, Leukemia). RNP-loaded NPs were evaluated for size and charge to correlate physiochemical properties with the outcome as well as establish quality control standards. NPs passing the QC were incubated with human GCSF-mobilized CD34 + hematopoietic stem and progenitor cells (HSPCs). In parallel, RNPs were delivered into CD34 + cells using our established EP protocol. NP- and EP-edited CD34 + cells were evaluated phenotypically by flow cytometry and functionally in colony-forming cell (CFC) assays as well as in NSG xenograft model. The optimal characteristics for RNP-loaded NPs were determined at 150-250 nm and 25-35 mV. Physiochemical assessment of RNP-loaded NP formations provided an upfront quality control of RNP components reliably detecting degraded components. Most importantly, NP charge directly correlated with the editing efficiency (Figure A). NPs achieved more than 85% CD33 knockout using 3-fold lower dose of CRISPR nucleases compared to EP. No impact on the erythromyeloid differentiation potential of gene-edited cells in CFC assays was observed. Finally, NP-modified CD34 + cells showed efficient and sustained gene editing in vivo with improved long-term multilineage engraftment potential in the peripheral blood (PB) and bone marrow stem cell compartment of NSG mice in comparison to EP-edited cells (Figure B). Here we show that PBAE-NPs enable efficient CRISPR/Cas9 gene editing of human GCSF-mobilized CD34 + cells without compromising the viability and long-term multilineage engraftment of human HSPCs in vivo. Most importantly, we defined physiochemical properties of PBAE-NPs that enable us to not only determine the integrity of our gene-editing agents but also predict the efficiency of editing in HSPCs. The requirement of 3-fold less reagents compared to EP, the ability to lyophilize quality-controlled and ready to administer gene therapy reagents, and the opportunity to engineer the surface of PBAE-NPs with HSC-targeting molecules (e.g. antibodies) could make this also a highly attractive and portable editing platform for in vivo HSC gene therapy. Figure 1 Figure 1. Disclosures Kiem: VOR Biopharma: Consultancy; Homology Medicines: Consultancy; Ensoma Inc.: Consultancy, Current holder of individual stocks in a privately-held company. Radtke: Ensoma Inc.: Consultancy; 47 Inc.: Consultancy.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 5002-5012 ◽  
Author(s):  
Amy H. Yin ◽  
Sheri Miraglia ◽  
Esmail D. Zanjani ◽  
Graca Almeida-Porada ◽  
Makio Ogawa ◽  
...  

AC133 is one of a new panel of murine hybridoma lines producing monoclonal IgG antibodies (mAbs) to a novel stem cell glycoprotein antigen with a molecular weight of 120 kD. AC133 antigen is selectively expressed on CD34bright hematopoietic stem and progenitor cells (progenitors) derived from human fetal liver and bone marrow, and blood. It is not detectable on other blood cells, cultured human umbilical vein endothelial cells (HUVECs), fibroblast cell lines, or the myeloid leukemia cell line KG1a by standard flow cytometric procedures. All of the noncommitted CD34+ cell population, as well as the majority of CD34+ cells committed to the granulocytic/monocytic pathway, are stained with AC133 antibody. In vitro clonogenicity assays have demonstrated that the CD34+AC133+ double-positive population from adult bone marrow contains the majority of the CFU-GM, a proportion of the CFU-Mix, and a minor population of BFU-E. The CD34dim and AC133− population has been shown to contain the remaining progenitor cells. AC133-selected cells engraft successfully in a fetal sheep transplantation model, and human cells harvested from chimeric fetal sheep bone marrow have been shown to successfully engraft secondary recipients, providing evidence for the long-term repopulating potential of AC133+ cells. A cDNA coding for AC133 antigen has been isolated, which codes for a polypeptide consisting of 865 amino acids (aa) with a predicted size of 97 kD. This antigen is modeled as a 5-transmembrane molecule, a structure that is novel among known cell surface structures. AC133 antibody provides an alternative to CD34 for the selection and characterization of cells necessary for both short- and long-term engraftment, in transplant situations, for studies of ex vivo expansion strategies, and for gene therapy.


Sign in / Sign up

Export Citation Format

Share Document