scholarly journals Efficient Nanoparticle-Mediated Delivery of Gene Editing Reagents into Human Hematopoietic Stem and Progenitor Cells

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2933-2933
Author(s):  
Rkia El Kharrag ◽  
Kurt Berckmueller ◽  
Margaret Cui ◽  
Ravishankar Madhu ◽  
Anai M Perez ◽  
...  

Abstract Autologous hematopoietic stem cell (HSC) gene therapy has the potential to cure millions of patients suffering from hematological diseases and disorders. Recent HSCs gene therapy trials using CRISPR/Cas9 nucleases to treat sickle cell disease (SCD) have shown promising results paving the way for gene editing approaches for other diseases. However, current applications depend on expensive and rare GMP facilities for the manipulation of HSCs ex vivo. Consequently, this promising treatment option remains inaccessible to many patients especially in low- and middle-income settings. HSC-targeted in vivo delivery of gene therapy reagents could overcome this bottleneck and thereby enhance the portability and availability of gene therapy. Various kinds of nanoparticles (lipid, gold, polymer, etc.) are currently used to develop targeted ex vivo as well as in vivo gene therapy approaches. We have previously shown that poly (β-amino ester) (PBAE)-based nanoparticle (NP) formulations can be used to efficiently deliver mRNA into human T cells and umbilical cord blood-derived CD34 + hematopoietic stem and progenitor cells (HSPCs) (Moffet et al. 2017, Nature Communications). Here, we optimized our NP formulation to deliver mRNA into GCSF-mobilized adult human CD34 + HSPCs, a more clinically relevant and frequently used cell source for ex vivo and the primary target for in vivo gene therapy. Furthermore, we specifically focused on the evaluation of NP-mediated delivery of CRISPR/Cas9 gene editing reagents. The efficiency of our NP-mediated delivery of gene editing reagents was comprehensively tested in comparison to electroporation, the current experimental, pre-clinical as well as clinical standard for gene editing. Most important for the clinical translation of this technology, we defined quality control parameters for NPs, identified standards that can predict the editing efficiency, and established protocols to lyophilize and store formulated NPs for enhanced portability and future in vivo applications. Nanoformulations were loaded with Cas9 ribonucleoprotein (RNP) complexes to knock out CD33, an established strategy in our lab to protect HSCs from anti-CD33 targeted acute myeloid leukemia (AML) immunotherapy (Humbert et al. 2019, Leukemia). RNP-loaded NPs were evaluated for size and charge to correlate physiochemical properties with the outcome as well as establish quality control standards. NPs passing the QC were incubated with human GCSF-mobilized CD34 + hematopoietic stem and progenitor cells (HSPCs). In parallel, RNPs were delivered into CD34 + cells using our established EP protocol. NP- and EP-edited CD34 + cells were evaluated phenotypically by flow cytometry and functionally in colony-forming cell (CFC) assays as well as in NSG xenograft model. The optimal characteristics for RNP-loaded NPs were determined at 150-250 nm and 25-35 mV. Physiochemical assessment of RNP-loaded NP formations provided an upfront quality control of RNP components reliably detecting degraded components. Most importantly, NP charge directly correlated with the editing efficiency (Figure A). NPs achieved more than 85% CD33 knockout using 3-fold lower dose of CRISPR nucleases compared to EP. No impact on the erythromyeloid differentiation potential of gene-edited cells in CFC assays was observed. Finally, NP-modified CD34 + cells showed efficient and sustained gene editing in vivo with improved long-term multilineage engraftment potential in the peripheral blood (PB) and bone marrow stem cell compartment of NSG mice in comparison to EP-edited cells (Figure B). Here we show that PBAE-NPs enable efficient CRISPR/Cas9 gene editing of human GCSF-mobilized CD34 + cells without compromising the viability and long-term multilineage engraftment of human HSPCs in vivo. Most importantly, we defined physiochemical properties of PBAE-NPs that enable us to not only determine the integrity of our gene-editing agents but also predict the efficiency of editing in HSPCs. The requirement of 3-fold less reagents compared to EP, the ability to lyophilize quality-controlled and ready to administer gene therapy reagents, and the opportunity to engineer the surface of PBAE-NPs with HSC-targeting molecules (e.g. antibodies) could make this also a highly attractive and portable editing platform for in vivo HSC gene therapy. Figure 1 Figure 1. Disclosures Kiem: VOR Biopharma: Consultancy; Homology Medicines: Consultancy; Ensoma Inc.: Consultancy, Current holder of individual stocks in a privately-held company. Radtke: Ensoma Inc.: Consultancy; 47 Inc.: Consultancy.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 985-985
Author(s):  
Seda S. Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Andrew Crouch ◽  
Gracy Sebastian ◽  
...  

Background Sickle cell disease (SCD) is curable by transplantation and potentially by gene therapy, and is generally treated by a combination of blood transfusion and Hydroxyurea (HU). Characterizing the hematopoietic system in SCD patients is important because the long-term effect of HU treatment are not known, and because of lower than expected efficacy of transduction and transplantation in Hematopoietic Stem and Progenitor Cells (HSPCs) in recent gene therapy trials. Previous studies have shown that the number of bone marrow (BM) CD34+ cells is elevated in SCD patients and that HU treatment is associated with decreased level of CD34+ cells in the peripheral blood (PB) and BM relative to steady state patients. However, hematopoiesis in SCD patients naive or treated with HU or transfusion remains poorly understood. Here, we report on the characterization of the HSPC compartment in patients with SCD by prospective isolation of 49f+ long-term Hematopoietic Stem Cells (49f+LT-HSCs), Multipotent Progenitors (MPPs), Common Myeloid Progenitors (CMPs), Megakaryocyte-Erythroid Progenitors (MEPs), and Granulocyte-Monocyte Progenitors (GMPs). Methods After obtaining consent, PB and/or BM were collected from 69 patients with HBSS/SB0, aged 12 to 45years, and 25 healthy adult African American controls. Patients were divided into chronic transfusion therapy (n=19), HU (n=31) and naïve (n=19) groups. Frozen mono-nuclear cells were analyzed by flow cytometry on a BD LSRII using CD 49f, 90 45Ra, 123, 235a, 38, 34, 33 and lineage antibodies. Results FACS analysis revealed that the number PB CD34+ cells was 2.5 CD34+/uL of blood in the HU group as compared to 19 CD34+/uL in the exchange and naive groups, and 7.3 CD34+/uL in the control group (q-value <0.05 in all cases). Analysis with additional markers revealed that the decrease in circulating HSPCs in the HU group affected the entire hematopoietic system since the number of 49f+LT-HSCs, MPPs, CMPs, MEPs were all significantly lower in the HU group. The decrease in cell number in the HU group, however, was not homogeneous. The proportion of LT-HSCs was higher in the HU and transfusion groups when compared to the naive and control groups. The HU group also had the lowest proportion of MPPs and GMPs, as well as the highest proportion of MEPs. We then investigated hematopoiesis as a function of the length of HU treatment to elucidate the long-term treatment effect of this cytotoxic agent. Patients > 18 years of age that had been treated on HU for at least three years exhibited a strong statistically significant negative correlation between years on HU and CD34+/uL (R2 = 0.41), LT-HSC/uL (R2 = 0.35), MPP/uL (R2 =0.43), CMP/uL (R2 = 0.37), MEP/uL (R2 = 0.25) and GMP/uL (R2 0.39, p<0.01 in all cases). Importantly there was no correlation between WBC counts, age, HU dose, or serum erythropoietin level versus the numbers of any HSPC/uL. Lastly, we compared the number of HSPCs in paired PB and BM samples 10 controls and 4 SCD patients. This revealed that the numbers of CD34+, HSCs, MPPs, CMPs, GMPs and MEPs in the PB and BM were well correlated (r2 in 0.6-0.8 range) suggesting that in first approximation, results obtained in the PB reflect changes in the BM rather than changes in egress of HSPCs from the BM. Discussion We have observed lower numbers of circulating CD34+,49f+LT- HSCs, MPPs, CMP, GMP and MEPs in individuals with HBSS on HU therapy when compared to naive, chronic transfusion and, to a lesser extent, controls. Furthermore we observed subtle differences in the proportion of various circulating stem and progenitor cells (HSPCs) suggesting that the various treatments affects hematopoiesis in complex ways. The strong negative correlations between the length of HU treatment and the numbers of HSPCs can be explained either by decreased cell mobilization to the periphery, or by a depletion of the HSPC numbers in the BM overtime. Most patients undergoing gene therapy trials are currently taken off HU and placed on transfusion therapy for several months to increase CD34+ cell collection and LT-HSC transduction efficiency. We observed a greater number of circulating 49f+LT-HSC/uL of blood in the transfusion group than in the HU group, but the proportion of 49f+LT-HSC relative to the number of CD34+ were similar in both groups. Functional studies may help determine whether 49f+LT-HSCs from the transfusion group are qualitatively different from of the HU group and more amenable to gene therapy. Figure Disclosures Manwani: Novartis: Consultancy; Pfizer: Consultancy; GBT: Consultancy, Research Funding. Minniti:Doris Duke Foundation: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 806-806
Author(s):  
Olivier Humbert ◽  
Stefan Radtke ◽  
Ray R Carillo ◽  
Anai M Perez ◽  
Sowmya Somashekar Reddy ◽  
...  

Abstract Beta-thalassemia and sickle cell disease are monogenic disorders that are currently treated by allogeneic bone marrow (BM) transplantation although the challenges of finding a suitable matched-donor and the risk of graft vs host disease have limited the adoption of this otherwise curative treatment. A potentially promising approach for hemoglobinopathies aims to reactivate fetal hemoglobin (HbF) as a substitute for defective or absent adult hemoglobin by modifying the patient's own hematopoietic stem and progenitor cells (HSPCs). Here, we evaluated CRISPR/Cas9-induced small deletions in HSPCs that are associated with hereditary persistence of fetal hemoglobin (HPFH) using our nonhuman primate (NHP) stem cell transplantation and gene therapy model. The CRISPR/Cas9 nuclease platform was employed to recapitulate a natural genetic alteration identified in individuals with HPFH, consisting of a 13-nucleotide (nt) deletion in the gamma globin gene promoter. A first cohort of three rhesus macaques received 70-75% HPFH-edited BM-derived CD34+ HSPCs. All animals showed rapid hematopoietic recovery and peripheral blood (PB) editing levels stabilized at 12-30% for at least a year post transplantation (Figure 1). HbF production, determined by circulating F-cells, persisted at frequencies of 8-22% and correlated with in vivo PB editing. Robust engraftment of gene-edited HSPCs in the BM compartment was observed in all animals, with no measurable off-target activity or clonal expansion. We have recently shown, that the CD34+CD90+CD45RA- phenotype is exclusively required for short- and long-term multilineage reconstitution, significantly reduces the target cell number for gene therapy/editing and is conserved between human and NHP hematopoietic cells (Radtke et al., STM, 2017). To explore this cell population further, we transplanted a second cohort of three animals by sort-purifying and solely editing this hematopoietic stem cell (HSC)-enriched CD34+CD90+CD45RA- phenotype, thus reducing the number of target cells by over 10-fold without impacting hematopoietic recovery, engraftment, or HbF reactivation. In vivo levels of gene-edited PB started at less than 5% because of the high number of co-infused unmodified progenitor cells, but rapidly increased to about 50% within 1 week (Figure 1) and stabilized at levels comparable to the CD34 cohort. This data supports our interpretation that CD34+CD90+CD45RA- cells are the main cell population relevant for long-term reconstitution and an excellent target for improved and efficient gene therapy/editing. These results demonstrate robust engraftment and persistence of CD34+ HPSCs as well as HSC-enriched CD34+CD90+CD45RA- cells that have been CRISPR/Cas9-edited at the 13nt-HPFH site, with marked and stable HbF reactivation and no overt adverse effects in a NHP transplantation and gene therapy model. Most importantly, we validated our refined CD90+ target which reduces the need for editing reagents by 90% without compromising the gene modification and engraftment efficiencies. These are the first data in a clinically relevant large animal model to demonstrate the feasibility and clinical applicability of CRISPR/Cas9-mediated fetal hemoglobin reactivation. The successful targeting and engraftment of our HSC-enriched population should also have significant implications for gene therapy and editing of other genetic diseases. Figure 1: Tracking of HPFH editing in transplanted animals. A) Editing efficiency was longitudinally determined by next generation sequencing of the targeted locus in PB white blood cells from 2 cohorts of transplanted rhesus animals. Frequency is represented as the proportion of all sequence reads containing an edited locus. B) Normalized frequency of the desired 13nt-HPFH deletion in the same animals as shown in A). Figure. Figure. Disclosures Negre: Bluebird Bio: Employment, Equity Ownership, Other: Salary. Adair:RX Partners: Honoraria; Miltenyi Biotec: Honoraria; Rocket Pharmaceuticals: Patents & Royalties: PCT/US2017/037967 and PCT/US2018/029983. Scharenberg:Generation Bio: Equity Ownership; Casebia Therapeutics: Employment; Alpine Immune Sciences: Equity Ownership. Kiem:Rocket Pharmaceuticals: Consultancy; Magenta: Consultancy; Homology Medicine: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2312-2312
Author(s):  
Jack M Heath ◽  
Aditi Chalishazar ◽  
Christina S Lee ◽  
William Selleck ◽  
Cecilia Cotta-Ramusino ◽  
...  

Abstract Transplantation of gene-modified autologous hematopoietic stem/progenitor cells (HSPCs) is an effective treatment for several hematologic diseases. However, a number of blood disorders may not be amenable to gene augmentation-based therapeutics. Targeted genome editing in human HSPCs could provide a therapeutic approach for these otherwise untreatable diseases. Here we demonstrate that CRISPR/Cas9 ribonucleoprotein (RNP) edits target genes in human HSPCs with high efficiency and precision. Human adult and umbilical cord blood (CB) CD34+ cells from 20 donors were electroporated with S. pyogenes or S. aureus Cas9 RNP targeting HBB, AAVS1, or CXCR4. Sequence analysis demonstrated up to 80% editing in CB CD34+ cells (mean±s.d: 61%±9%) and up to 57% in adult CD34+ cells (39%±13%). Delivery of Cas9 RNP and a single-stranded oligodeoxynucleotide donor (ssODN) led to up to 12% ssODN-mediated homology directed repair (HDR) and also led to a 20% increase in total gene editing (HDR+NHEJ)(RNP: 48%±15%; RNP+ssODN: 69%±8%). Both Cas9 RNP gene-edited CD34+ cells and donor-matched untreated control CD34+ cells reconstituted human hematopoiesis in primary and secondary recipient immunodeficient mice, with ~85% human CD45+ cell peripheral blood reconstitution 4 months after primary transplantation. Human T and B lymphoid, erythroid, and myeloid cells were detected in the spleen, thymus, and bone marrow with 20% CD34+ cell engraftment in the marrow of mice transplanted with RNP gene-edited or control CD34+ cells. The level of targeted gene editing in human erythroid, myeloid, and CD34+ cells that were recovered and enriched from the hematopoietic organs of primary recipients (~50%) was similar to the level of gene editing detected in the pre-infusion product (~60%). In summary, these results indicate that Cas9 gene-edited human HSPCs retain long-term engraftment potential and support multilineage blood reconstitution in vivo, thus supporting further investigation of CRISPR/Cas9 mediated gene-edited hematopoietic stem/progenitor cell therapies. Disclosures Heath: Editas Medicine: Employment. Chalishazar:Editas Medicine: Employment. Lee:Editas Medicine: Employment. Selleck:Editas Medicine: Employment. Cotta-Ramusino:Editas Medicine: Employment. Bumcrot:Editas Medicine: Employment. Gori:Editas Medicine: Employment.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4612-4621 ◽  
Author(s):  
M.A. Dao ◽  
K. Hashino ◽  
I. Kato ◽  
J.A. Nolta

Abstract Recent reports have indicated that there is poor engraftment from hematopoietic stem cells (HSC) that have traversed cell cycle ex vivo. However, inducing cells to cycle in culture is critical to the fields of ex vivo stem cell expansion and retroviral-mediated gene therapy. Through the use of a xenograft model, the current data shows that human hematopoietic stem and progenitor cells can traverse M phase ex vivo, integrate retroviral vectors, engraft, and sustain long-term hematopoiesis only if they have had the opportunity to engage their integrin receptors to fibronectin during the culture period. If cultured in suspension under the same conditions, transduction is undetectable and the long-term multilineage regenerative capacity of the primitive cells is severely diminished.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 811
Author(s):  
Pranav Oberoi ◽  
Kathrina Kamenjarin ◽  
Jose Francisco Villena Ossa ◽  
Barbara Uherek ◽  
Halvard Bönig ◽  
...  

Obtaining sufficient numbers of functional natural killer (NK) cells is crucial for the success of NK-cell-based adoptive immunotherapies. While expansion from peripheral blood (PB) is the current method of choice, ex vivo generation of NK cells from hematopoietic stem and progenitor cells (HSCs) may constitute an attractive alternative. Thereby, HSCs mobilized into peripheral blood (PB-CD34+) represent a valuable starting material, but the rather poor and donor-dependent differentiation of isolated PB-CD34+ cells into NK cells observed in earlier studies still represents a major hurdle. Here, we report a refined approach based on ex vivo culture of PB-CD34+ cells with optimized cytokine cocktails that reliably generates functionally mature NK cells, as assessed by analyzing NK-cell-associated surface markers and cytotoxicity. To further enhance NK cell expansion, we generated K562 feeder cells co-expressing 4-1BB ligand and membrane-anchored IL-15 and IL-21. Co-culture of PB-derived NK cells and NK cells that were ex-vivo-differentiated from HSCs with these feeder cells dramatically improved NK cell expansion, and fully compensated for donor-to-donor variability observed during only cytokine-based propagation. Our findings suggest mobilized PB-CD34+ cells expanded and differentiated according to this two-step protocol as a promising source for the generation of allogeneic NK cells for adoptive cancer immunotherapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3249-3249
Author(s):  
Barbara Cassani ◽  
Grazia Andolfi ◽  
Massimiliano Mirolo ◽  
Luca Biasco ◽  
Alessandra Recchia ◽  
...  

Abstract Gene transfer into hematopoietic stem/progenitor cells (HSC) by gammaretroviral vectors is an effective treatment for patients affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA)-deficiency. Recent studied have indicated that gammaretroviral vectors integrate in a non-random fashion in their host genome, but there is still limited information on the distribution of retroviral insertion sites (RIS) in human long-term reconstituting HSC following therapeutic gene transfer. We performed a genome-wide analysis of RIS in transduced bone marrow-derived CD34+ cells before transplantation (in vitro) and in hematopoietic cell subsets (ex vivo) from five ADA-SCID patients treated with gene therapy combined to low-dose busulfan. Vector-genome junctions were cloned by inverse or linker-mediated PCR, sequenced, mapped onto the human genome, and compared to a library of randomly cloned human genome fragments or to the expected distribution for the NCBI annotation. Both in vitro (n=212) and ex vivo (n=496) RIS showed a non-random distribution, with strong preference for a 5-kb window around transcription start sites (23.6% and 28.8%, respectively) and for gene-dense regions. Integrations occurring inside the transcribed portion of a RefSeq genes were more represented in vitro than ex vivo (50.9 vs 41.3%), while RIS <30kb upstream from the start site were more frequent in the ex vivo sample (25.6% vs 19.4%). Among recurrently hit loci (n=50), LMO2 was the most represented, with one integration cloned from pre-infusion CD34+ cells and five from post-gene therapy samples (2 in granulocytes, 3 in T cells). Clone-specific Q-PCR showed no in vivo expansion of LMO2-carrying clones while LMO2 gene overexpression at the bulk level was excluded by RT-PCR. Gene expression profiling revealed a preference for integration into genes transcriptionally active in CD34+ cells at the time of transduction as well as genes expressed in T cells. Functional clustering analysis of genes hit by retroviral vectors in pre- and post-transplant cells showed no in vivo skewing towards genes controlling self-renewal or survival of HSC (i.e. cell cycle, transcription, signal transduction). Clonal analysis of long-term repopulating cells (>=6 months) revealed a high number of distinct RIS (range 42–121) in the T-cell compartment, in agreement with the complexity of the T-cell repertoire, while fewer RIS were retrieved from granulocytes. The presence of shared integrants among multiple lineages confirmed that the gene transfer protocol was adequate to allow stable engraftment of multipotent HSC. Taken together, our data show that transplantation of ADA-transduced HSC does not result in skewing or expansion of malignant clones in vivo, despite the occurrence of insertions near potentially oncogenic genomic sites. These results, combined to the relatively long-term follow-up of patients, indicate that retroviral-mediated gene transfer for ADA-SCID has a favorable safety profile.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2324-2324
Author(s):  
Juan Xiao ◽  
Bing Han ◽  
Wanling Sun ◽  
Yuping Zhong ◽  
Yongji Wu

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disorder characterized by intravascular hemolysis, venous thrombosis, and bone marrow (BM) failure. Until now, allogeneic hematopoietic stem cell transplantation is still the only way to cure PNH. Eculizumab, although very promising, is not the eradication of the disease because of raising the possibility of severe intravascular hemolysis if therapy is interrupted. Here we enriched the residual bone marrow normal progenitor cells (marked by CD34+CD59+) from PNH patients, tried to find an effective way of expanding the progenitors cells used for autologous bone marrow transplantation (ABMT). Objective To expand CD34+CD59+ cells isolated from patients with PNH and observe the long-term hemaotopoietic reconstruction ability of the expanded cells both ex vivo and in vivo. Methods CD34+CD59+ cells from 13 patients with PNH and CD34+ cells from 11 normal controls were separated from the bone marrow monouclear cells first by immunomagnetic microbead and then by flow cytometry autoclone sorting. The selected cells were then cultivated under different conditions for two weeks to find out the optimal expansion factors. The long-term hematopoietic supporting ability of expanded CD34+CD59+ cells was evaluated by long-term culture in semi-solid medium in vitro and long-term engraftment in irradiated severe combined immunodeficiency(SCID) mice in vivo. Results The best combination of hematopoietic growth factors for ex vivo expansion was SCF+IL-3+IL-6+FL+Tpo+Epo, and the most suitable time for harvest was on day 7. Although the CD34+CD59+ PNH cells had impaired ex vivo increase compared with normal CD34+ cells (the biggest expansion was 23.49±3.52 fold in CD34+CD59+ PNH cells and 38.82±4.32 fold in CD34+ normal cells, P&lt;0.01 ), they remained strong colony-forming capacity even after expansion ( no difference was noticed in CFCs or LTC-IC of PNH CD34+CD59+ cells before and after expansion, P&gt;0.05). According to the above data, 11/13(84.3%) patients with PNH can get enough CD34+CD59+cells for ABMT after expansion. The survival rate and human CD45 expression in different organs was similar between the irradiated SCID mice transplanted with expanded CD34+CD59+ PNH cells and those with normal CD34+ cells (P&gt;0.05). The peripheral blood cell count recovered on day 90 in mice transplanted with PNH cells, which was compatible with those transplanted with normal cells (P&gt;0.05). On secondary transplantation, the peripheral blood cell count returned to almost normal on day 30 in mice transplanted with either PNH cells or normal cells. Lower CD45 percentage was found in secondary transplantation compared with primary transplantation but no difference between mice transplanted with different cells. Conclusion Isolated CD34+CD59+ cells from patients with PNH can be effectively expanded ex vivo and can support lasting hematopoiesis both ex vivo and in vivo. These data provide a new potential way of managing PNH with ABMT.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 513-513
Author(s):  
Pekka Jaako ◽  
Shubhranshu Debnath ◽  
Karin Olsson ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract Abstract 513 Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia associated with physical abnormalities and predisposition to cancer. Mutations in genes that encode ribosomal proteins have been identified in approximately 60–70 % of the patients. Among these genes, ribosomal protein S19 (RPS19) is the most common DBA gene (25 % of the cases). Current DBA therapies involve risks for serious side effects and a high proportion of deaths are treatment-related underscoring the need for novel therapies. We have previously demonstrated that enforced expression of RPS19 improves the proliferation, erythroid colony-forming potential and differentiation of patient derived RPS19-deficient hematopoietic progenitor cells in vitro (Hamaguchi, Blood 2002; Hamaguchi, Mol Ther 2003). Furthermore, RPS19 overexpression enhances the engraftment and erythroid differentiation of patient-derived hematopoietic stem and progenitor cells when transplanted into immunocompromised mice (Flygare, Exp Hematol 2008). Collectively these studies suggest the feasibility of gene therapy in the treatment of RPS19-deficient DBA. In the current project we have assessed the therapeutic efficacy of gene therapy using a mouse model for RPS19-deficient DBA (Jaako, Blood 2011; Jaako, Blood 2012). This model contains an Rps19-targeting shRNA (shRNA-D) that is expressed by a doxycycline-responsive promoter located downstream of Collagen A1 gene. Transgenic animals were bred either heterozygous or homozygous for the shRNA-D in order to generate two models with intermediate or severe Rps19 deficiency, respectively. Indeed, following transplantation, the administration of doxycycline to the recipients with homozygous shRNA-D bone marrow results in an acute and lethal bone marrow failure, while the heterozygous shRNA-D recipients develop a mild and chronic phenotype. We employed lentiviral vectors harboring a codon-optimized human RPS19 cDNA driven by the SFFV promoter, followed by IRES and GFP (SFFV-RPS19). A similar vector without the RPS19 cDNA was used as a control (SFFV-GFP). To assess the therapeutic potential of the SFFV-RPS19 vector in vivo, transduced c-Kit enriched bone marrow cells from control and homozygous shRNA-D mice were injected into lethally irradiated wild-type mice. Based on the percentage of GFP-positive cells, transduction efficiencies varied between 40 % and 60 %. Three months after transplantation, recipient mice were administered doxycycline in order to induce Rps19 deficiency. After two weeks of doxycycline administration, the recipients transplanted with SFFV-RPS19 or SFFV-GFP control cells showed no differences in blood cellularity. Remarkably, at the same time-point the recipients with SFFV-GFP homozygous shRNA-D bone marrow showed a dramatic decrease in blood cellularity that led to death, while the recipients with SFFV-RPS19 shRNA-D bone marrow showed nearly normal blood cellularity. These results demonstrate the potential of enforced expression of RPS19 to reverse the severe anemia and bone marrow failure in DBA. To assess the reconstitution advantage of transduced hematopoietic stem and progenitor cells with time, we performed similar experiments with heterozygous shRNA-D bone marrow cells. We monitored the percentage of GFP-positive myeloid cells in the peripheral blood, which provides a dynamic read-out for bone marrow activity. After four months of doxycycline administration, the mean percentage of GFP-positive cells in the recipients with SFFV-RPS19 heterozygous shRNA-D bone marrow increased to 97 %, while no similar advantage was observed in the recipients with SFFV-RPS19 or SFFV-GFP control bone marrow, or SFFV-GFP heterozygous shRNA-D bone marrow. Consistently, SFFV-RPS19 conferred a reconstitution advantage over the non-transduced cells in the bone marrow. Furthermore, SFFV-RPS19 reversed the hypocellular bone marrow observed in the SFFV-GFP heterozygous shRNA-D recipients. Taken together, using mouse models for RPS19-deficient DBA, we demonstrate that the enforced expression of RPS19 rescues the lethal bone marrow failure and confers a strong reconstitution advantage in vivo. These results provide a proof-of-principle for gene therapy in the treatment of RPS19-deficient DBA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (5) ◽  
pp. 957-964 ◽  
Author(s):  
Jinah Han ◽  
Young Jun Koh ◽  
Hye Rin Moon ◽  
Hyun Gee Ryoo ◽  
Chung-Hyun Cho ◽  
...  

Abstract The stromal vascular fraction (SVF) in adipose tissue contains a pool of various stem and progenitor cells, but the existence of hematopoietic stem and progenitor cells (HSPCs) in the SVF has not been seriously considered. We detected the presence of HSPCs in the SVF by phenotypically probing with Lin−Sca-1+c-kit+ (LSK) and functionally confirming the presence using colony-forming cell assay and assessing the long-term multilineage reconstitution ability after SVF transplantation. The LSK population in the SVF was 0.004% plus or minus 0.001%, and 5 × 105 freshly isolated SVF cells gave rise to 13 plus or minus 4 multilineage colonies. In addition, 0.15% plus or minus 0.03% of SVF cells was home to bone marrow (BM), especially near vascular and endosteal regions, 24 hours after blood transplantation. SVF transplantation was capable of generating a long-term (> 16 weeks), but variable extent (2.1%-32.1%) multilineage reconstitution in primary recipients, which was subsequently transferred to the secondary recipients by BM transplantation. All HSPCs within the SVF originated from the BM. Furthermore, the granulocyte–colony-stimulating factor (G-CSF) mobilization of HSPCs from BM markedly elevated the number of phenotypic and functional HSPCs in the SVF, which induced a high efficiency long-term reconstitution in multilineage hematopoiesis in vivo. Our results provide compelling evidence that adipose tissue is a novel extramedullary tissue possessing phenotypic and functional HSPCs.


Sign in / Sign up

Export Citation Format

Share Document