scholarly journals Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform

2021 ◽  
Vol 20 ◽  
pp. 459-469
Author(s):  
Erkko Ylösmäki ◽  
Leena Ylösmäki ◽  
Manlio Fusciello ◽  
Beatriz Martins ◽  
Petra Ahokas ◽  
...  
2009 ◽  
Vol 15 (15) ◽  
pp. 4847-4856 ◽  
Author(s):  
Margret S. Fernandes ◽  
Erica M. Gomes ◽  
Lindsay D. Butcher ◽  
Reuben Hernandez-Alcoceba ◽  
Dongkun Chang ◽  
...  

2019 ◽  
Vol 30 ◽  
pp. xi14
Author(s):  
S. Zafar ◽  
D.C.A. Quixabeira ◽  
O. Hemminki ◽  
V. Cervera-Carrascon ◽  
J.M. Santos ◽  
...  

2001 ◽  
Vol 392 (2) ◽  
pp. 208-218 ◽  
Author(s):  
James E. Matsuura ◽  
Arvia E. Morris ◽  
Randal R. Ketchem ◽  
Emory H. Braswell ◽  
Ralph Klinke ◽  
...  

2004 ◽  
Vol 22 (14_suppl) ◽  
pp. 2602-2602 ◽  
Author(s):  
P. A. Reay ◽  
M. Yi-Sun ◽  
B. Liu ◽  
Y. McGrath ◽  
M. Wakeling ◽  
...  

2004 ◽  
Vol 22 (14_suppl) ◽  
pp. 2602-2602
Author(s):  
P. A. Reay ◽  
M. Yi-Sun ◽  
B. Liu ◽  
Y. McGrath ◽  
M. Wakeling ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157619 ◽  
Author(s):  
Beatriz Vera ◽  
Naiara Martínez-Vélez ◽  
Enric Xipell ◽  
Arlet Acanda de la Rocha ◽  
Ana Patiño-García ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Sara Feola ◽  
Jacopo Chiaro ◽  
Beatriz Martins ◽  
Salvatore Russo ◽  
Manlio Fusciello ◽  
...  

Beside the isolation and identification of MHC-I restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective anti-tumor CD8+ T cell mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific anti-tumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and the HEX software. The latter is a tool previously developed by Chiaro et al. (1), able to identify tumor antigens similar to pathogen antigens, in order to exploit molecular mimicry and tumor pathogen cross-reactive T-cells in cancer vaccine development. The generated list of candidates (twenty-six in total) was further tested in a functional characterization assay using interferon-γ ELISpot (Enzyme-Linked Immunospot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, non-treated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.


2021 ◽  
Author(s):  
Sao Puth ◽  
Vivek Verma ◽  
Seol Hee Hong ◽  
Wenzhi Tan ◽  
Shee Eun Lee ◽  
...  

Abstract Therapeutic cancer vaccines (TCVs) should induce robust tumor-specific T cell responses. To achieve this, TCVs incorporate T cell epitopes and strong adjuvants. Here, we report an all-in-one adjuvanted cancer vaccine platform, which targets intracellular compartment of antigen presenting cells and subsequently induces effective cytotoxic T cell responses. We screened a novel peptide (DCpep6) that specifically binds and tranmits into CD11c+ cells through in vivo phage biopanning. We then engineered a protein-based TCV (DEF) consisting of DCpep6 (D), an optimized HPV E7 tumor antigen (E), and a built-in flagellin adjuvant (F) as a single molecule. DEF was stably expressed and each component was functional. In vivo administered DEF rapidly biodistributed in draining LNs and internalized into CD11c+ cells. DEF immunization elicited strong anti-tumor T cell responses and provided long-term survival of TC-1 tumor implanted mice. The DEF-mediated anti-tumor effect was abolished in NLRC4−/− mice. Taken together, we propose a protein-based all-in-one TCV platform that intracellularly co-delivers tumor antigen and inflammasome activator to DCs to induce long-lasting anti-tumor T cell responses.


Sign in / Sign up

Export Citation Format

Share Document