scholarly journals Photocatalytic activity and degradation mechanism of in-situ reduction Bi-doped self-assembled 3D flower-sphere UiO-66-NH2/BiOBr

2021 ◽  
pp. 100090
Author(s):  
Xiaorui Zhang ◽  
Wang Cao ◽  
Chen Chen ◽  
Caiyun Jiang ◽  
Yuping Wang
NANO ◽  
2021 ◽  
Author(s):  
Hanxiao Du ◽  
Juan Ji ◽  
Luyi Wang ◽  
Chenwei Qin ◽  
Ze Zhang ◽  
...  

2014 ◽  
Vol 38 (10) ◽  
pp. 4913-4921 ◽  
Author(s):  
Jiajia Hu ◽  
Guangqing Xu ◽  
Jinwen Wang ◽  
Jun Lv ◽  
Xinyi Zhang ◽  
...  

Bi nanoparticles on BiOCl nanosheets, synthesized via in situ reduction, enhance the UV light photocatalytic activity and achieve visible light activity.


POSITRON ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Lia Destiarti ◽  
Oktaviardi Bityasmawan Abdillah ◽  
Retno Maharsi ◽  
Octia Floweri ◽  
Ferry Iskandar

In this work, the photocatalytic performance of electrochemically exfoliated graphite (EG) with low copper addition (≤ 5 wt.%) was studied. Composites of EG/Cu/Cu2O were successfully prepared by microwave-assisted in situ reduction method. FTIR spectra of the samples showed that the main functional groups of graphite were detected in the samples. XRD characterization further proved the presence of EG, Cu, and Cu2O in the samples. The higher proportion of Cu2O presented in the samples prepared with a higher amount of Cu2+. SEM analysis showed that Cu2O/Cu particles were homogeneously deposited on the surface of EG. The composites of EG, Cu, and Cu2O with a varied amount of Cu (1 and 5 wt. %) in EG / Cu2+ mixture were examined as photocatalyst in the degradation process of Rhodamine B (RhB). The photocatalytic degradation of RhB was analysed by observing its decolorization within a set time of irradiation. UV-Vis analysis revealed that the degradation of RhB in EG/Cu/Cu2O A and B for 105 minutes was 26 and 35 %, respectively. The result demonstrates that the sample with a larger amount of Cu2O (sample B, Cu 5 wt.%) shows higher photocatalytic activity in the degradation of RhB.


Author(s):  
Shuqi Wu ◽  
Junbu Wang ◽  
Qingchuan Li ◽  
Zeai Huang ◽  
Zhiqiang Rao ◽  
...  

AbstractBiOCl has been used in the photoreduction of CO2, but exhibits limited photocatalytic activity. In this study, Bi was in situ reduced and deposited on the surface of (001)-dominated BiOCl nanosheets by NaBH4 to form Bi/BiOCl nanosheets enriched with oxygen vacancies. The as-prepared Bi/BiOCl nanosheets having low thickness (ca. 10 nm) showed much higher concentration of oxygen vacancies compared to Bi/BiOCl nanoplates having high thickness (ca. 100 nm). Subsequently, the photocatalytic activity of the Bi/BiOCl nanosheets enriched with oxygen vacancies for CO2 reduction was dramatically enhanced and much higher than that of BiOCl nanoplates, nanosheets, and Bi/BiOCl nanoplates. It showed that the improved photocatalytic activity in the reduction of CO2 can be attributed to the enhanced separation efficiency of photogenerated electron–hole pairs of the oxygen vacancies on BiOCl nanosheets and Bi metals. This work demonstrated that the in situ reduction of non-noble metals on the surface of BiOCl nanosheets that are enriched with oxygen vacancies is favorable for increasing photocatalytic CO2 reduction.


Sign in / Sign up

Export Citation Format

Share Document