Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses

2009 ◽  
Vol 282 (4) ◽  
pp. 657-660 ◽  
Author(s):  
Cunxia Li ◽  
Xu Shi ◽  
Jinhai Si ◽  
Tao Chen ◽  
Feng Chen ◽  
...  
2004 ◽  
Vol 453-454 ◽  
pp. 550-556 ◽  
Author(s):  
Toshiaki Kondo ◽  
Kazuhiko Yamasaki ◽  
Saulius Juodkazis ◽  
Shigeki Matsuo ◽  
Vygantas Mizeikis ◽  
...  

2019 ◽  
Vol 25 (1) ◽  
pp. 82-87
Author(s):  
Wenqiong Su ◽  
Yulong Li ◽  
Lulu Zhang ◽  
Jiahui Sun ◽  
Shuopeng Liu ◽  
...  

Typography-like templates for polydimethylsiloxane (PDMS) microfluidic chips using a fused deposition modeling (FDM) three-dimensional (3D) printer are presented. This rapid and fast proposed scheme did not require complicated photolithographic fabrication facilities and could deliver resolutions of ~100 μm. Polylactic acid (PLA) was adopted as the material to generate the 3D-printed units, which were then carefully assembled on a glass substrate using a heat-melt-curd strategy. This craft of bonding offers a cost-effective way to design and modify the templates of microfluidic channels, thus reducing the processing time of microfluidic chips. Finally, a flexible microfluidic chip to be employed for cell-based drug screening was developed based on the modularized 3D-printed templates. The lithography-free, typography-like, 3D-printed templates create a modularized fabrication process and promote the prevalence of integrated microfluidic systems with minimal requirements and improved efficiency.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Sungil Kim ◽  
Jeongtae Kim ◽  
Yeun-Ho Joung ◽  
Sanghoon Ahn ◽  
Jiyeon Choi ◽  
...  

Abstract We present the selective laser-induced etching (SLE) process and design guidelines for the fabrication of three-dimensional (3D) microfluidic channels in a glass. The SLE process consisting of laser direct patterning and wet chemical etching uses different etch rates between the laser modified area and the unmodified area. The etch selectivity is an important factor for the processing speed and the fabrication resolution of the 3D structures. In order to obtain the maximum etching selectivity, we investigated the process window of the SLE process: the laser pulse energy, pulse repetition rate, and scan speed. When using potassium hydroxide (KOH) as a wet etchant, the maximum etch rate of the laser-modified glass was obtained to be 166 μm/h, exhibiting the highest selectivity about 333 respect to the pristine glass. Based on the optimized process window, a 3D microfluidic channel branching to three multilayered channels was successfully fabricated in a 4 mm-thick glass. In addition, appropriate design guidelines for preventing cracks in a glass and calibrating the position of the dimension of the hollow channels were studied.


2008 ◽  
Vol 1096 ◽  
Author(s):  
Ersin Altintas ◽  
Edin Sarajlic ◽  
Karl F. Bohringer ◽  
Hiroyuki Fujita

AbstractNanosystems operating in liquid media may suffer from random thermal fluctuations. Some natural nanosystems, e.g. biomolecular motors, which survive in an environment where the energy required for bio-processes is comparable to thermal energy, exploit these random fluctuations to generate a controllable unidirectional movement. Inspired by the nature, a transportation system of nanobeads achieved by exploiting Brownian motion were proposed and realized. This decreases energy consumption and saves the energy compared to ordinal pure electric or magnetic drive. In this paper we present a linear Brownian motor with a 3-phase electrostatic rectification aimed for unidirectional transport of nanobeads in microfluidic channels. The transport of the beads is performed in 1 μm deep, 2 μm wide PDMS microchannels, which constrain three-dimensional random motion of nanobeads into 1D fluctuation, so-called tamed Brownian motion. We have experimentally traced the rectified motion of nanobeads and observed the shift in the beam distribution as a function of applied voltage. The detailed computational analysis on the importance of switching sequence on the speed performance of motor is performed and compared with the experimental results showing a good agreement.


2003 ◽  
Vol 782 ◽  
Author(s):  
Yves Bellouard ◽  
Ali Said ◽  
Mark Dugan ◽  
Philippe Bado

ABSTRACTThis paper presents dramatic improvements in the micro-fabrication of three-dimensional microfluidic channels and high-aspect ratio tunnels within the bulk of a fused silica substrate. We also report the fabrication of optical waveguides within the same substrate, which is a major step towards the integration of sensing capabilities within microfluidic networks.This integrated device, which combines both fluidic channels and optical waveguides, opens new opportunities in bio- and chemical sensing. The flexibility of the improved manufacturing process offers substantial new design capabilities, especially for single channel probing and massively parallel processing and sensing.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 583 ◽  
Author(s):  
Florin Jipa ◽  
Stefana Iosub ◽  
Bogdan Calin ◽  
Emanuel Axente ◽  
Felix Sima ◽  
...  

Glass is an alternative solution to polymer for the fabrication of three-dimensional (3D) microfluidic biochips. Femtosecond (fs) lasers are nowadays the most promising tools for transparent glass processing. Specifically, the multiphoton process induced by fs pulses enables fabrication of embedded 3D channels with high precision. The subtractive fabrication process creating 3D hollow structures in glass, known as fs laser-assisted etching (FLAE), is based on selective removal of the laser-modified regions by successive chemical etching in diluted hydrofluoric acid solutions. In this work we demonstrate the possibility to generate embedded hollow channels in photosensitive Foturan glass volume by high repetition rate picosecond (ps) laser-assisted etching (PLAE). In particular, the influence of the critical irradiation doses and etching rates are discussed in comparison of two different wavelengths of ultraviolet (355 nm) and visible (532 nm) ranges. Fast and controlled fabrication of a basic structure composed of an embedded micro-channel connected with two open reservoirs, commonly used in the biochip design, are achieved inside glass. Distinct advantages such as good aspect-ratio, reduced processing time for large areas, and lower fabrication cost are evidenced.


Author(s):  
Haipeng Zhang ◽  
Tomer Palmon ◽  
Seunghee Kim ◽  
Sangjin Ryu

Abstract Porous media compressed air energy storage (PM-CAES) is an emerging technology that stores compressed air in an underground aquifer during the off-peak periods, to mitigate the mismatch between energy supplies and demands. Thus, PM-CAES involves repeated two-phase fluid flow in porous media, and ensuring the success of PM-CAES requires a better understanding of repetitive two-phase fluid flow through porous media. For this purpose, we previously developed microfluidic channels that retain a two-dimensional (2D) pore network. Because it was found that the geometry of the pore structure significantly affects the patterns and occupational efficiencies of a non-wetting fluid during the drainage-imbibition cycles, a more realistic microfluidic model is needed to reflect the three-dimensional (3D) nature of pore structures in the underground geologic formation. In this study, we developed an easy-to-adopt method to fabricate a microfluidic device with a 3D random pore network using a sacrificial sugar template. Instead of using a master mold made in photolithography, a sacrificial mold was made using sugar grains so that the mold could be washed away after PDMS curing. First, we made sugar templates with different levels of compaction load, and found that the thickness of the templates decreased as the compaction load increased, which suggests more packing of sugar grains and thus lower porosity in the template. Second, we fabricated PDMS porous media using the sugar template as a mold, and imaged their pore structure using micro computed tomography (micro-CT). Pores within PDSM samples appeared more tightly packed as the compacting force increased. Last, we fabricated a prototype PDMS channel device with a 3D pore network using a sugar template, and visualized flow through the pore network using colored water. The flow visualization result shows that the water was guided by the random pores and that the resultant flow pattern was three dimensional.


Sign in / Sign up

Export Citation Format

Share Document