Experimental and numerical analysis of channel-length-dependent electrical properties in bottom-gate, bottom-contact organic thin-film transistors with Schottky contact

2014 ◽  
Vol 15 (12) ◽  
pp. 3681-3687 ◽  
Author(s):  
Kei Noda ◽  
Yasuo Wada ◽  
Toru Toyabe
2013 ◽  
Vol 52 (2R) ◽  
pp. 021602 ◽  
Author(s):  
Kei Noda ◽  
Yusuke Wakatsuki ◽  
Yuji Yamagishi ◽  
Yasuo Wada ◽  
Toru Toyabe ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 532-551
Author(s):  
S. Wageh ◽  
W. Boukhili ◽  
Ali Veysel Tunç ◽  
N. Hamad ◽  
Ahmed Al-Ghamdi

The organic thin film transistors made of different polymers with various channel lengths were fabricated, characterized and modeled. Three types of polymers with different polydispersity (PDI) and molecular weight were applied as active layers. Optimizing OTFTs were achieved by two technological ways, namely the treatment of SiO2 by octadecyl trichlorosilane (OTS) (self-assembled monolayers (SAM)) in correlation with channel length variation. The effect of treatment of SiO2 by OTS (octadecyl trichlorosilane) on the output and transfer characteristics along with the electrical parameters were investigated. In addition, the effects of polydispersity (PDI) and molecular weight of organic semiconductor were accounted. The characteristics of transistors depended on the exposure to SiO2 by OTS, channel length, polydispersity (PDI) and molecular weight of polymers. The devices fabricated with treatment of SiO2 by OTS along with organic semiconductor, possessing high molecular weight has a channel length of 2.5 μm, which showed outstanding mobility of 10–2 cm2V –1s–1, current ratio Ion/Ioff = 2.5 × 106 and a low contact resistance of 4.8 × 10 5 Ω. An analytical model reproduced output electrical properties having characteristics of fabricated devices. The obtained results by the model were fairly agreed with those obtained experimentally for long and short channel devices.


2021 ◽  
Author(s):  
Anubha Bilgaiyan ◽  
Seung-Il Cho ◽  
Miho Abiko ◽  
Kaori Watanabe ◽  
Makoto Mizukami

Abstract The low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs and circuits are reported with a polymeric gate dielectric and 6,6 bis (trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f ]thieno[3,2-b]thiophene (4H-21DNTT) for the organic semiconducting layer. By optimizing and controlling the fabrication conditions, a record high saturation mobility of 8.8 cm2V− 1s− 1 was demonstrated as well as large on/off ratios (> 106) for relatively short channel lengths of 15 µm and an average carrier mobility of 10.5 cm2V-1s-1 for long channel length OTFTs (> 50 µm). The pseudo-CMOS inverter circuit with a channel length of 15 µm exhibited sharp switching characteristics with a high signal gain of 31.5 at a supply voltage of 20 V. In addition to the inverter circuit, NAND logic circuits were further investigated, which also exhibited remarkable logic characteristics, with a high gain, an operating frequency of 5 kHz, and a short propagation delay of 22.1 µs. The uniform and reproducible performance of 4H-21DNTT OTFTs show potential for large-area, low-cost real-world applications on industry-compatible bottom-contact substrates.


2011 ◽  
Vol 14 (8) ◽  
pp. H333 ◽  
Author(s):  
Minseok Kim ◽  
In-Kyu You ◽  
Hyun Han ◽  
Soon-Won Jung ◽  
Tae-Youb Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document