Optimization of clinically applied orthodontic archwire electrothermal treatment conditions by heat tint and mechanical properties: An experimental study

2020 ◽  
Vol 18 (1) ◽  
pp. 137-146
Author(s):  
Yingzhi Gu ◽  
Rui Zhuang ◽  
Xianju Xie ◽  
Dongliang Zhang ◽  
Yuxing Bai
2021 ◽  
Vol 5 (4) ◽  
pp. 110
Author(s):  
Flaminio Sales ◽  
Andrews Souza ◽  
Ronaldo Ariati ◽  
Verônica Noronha ◽  
Elder Giovanetti ◽  
...  

Polydimethylsiloxane (PDMS) is a polymer that has attracted the attention of researchers due to its unique properties such as transparency, biocompatibility, high flexibility, and physical and chemical stability. In addition, PDMS modification and combination with other materials can expand its range of applications. For instance, the ability to perform superhydrophobic coating allows for the manufacture of lenses. However, many of these processes are complex and expensive. One of the most promising modifications, which consists of the development of an interchangeable coating, capable of changing its optical characteristics according to some stimuli, has been underexplored. Thus, we report an experimental study of the mechanical and optical properties and wettability of pure PDMS and of two PDMS composites with the addition of 1% paraffin or beeswax using a gravity casting process. The composites’ tensile strength and hardness were lower when compared with pure PDMS. However, the contact angle was increased, reaching the highest values when using the paraffin additive. Additionally, these composites have shown interesting results for the spectrophotometry tests, i.e., the material changed its optical characteristics when heated, going from opaque at room temperature to transparent, with transmittance around 75%, at 70 °C. As a result, these materials have great potential for use in smart devices, such as sensors, due to its ability to change its transparency at high temperatures.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


2021 ◽  
Vol 287 ◽  
pp. 123019
Author(s):  
Jianmin Hua ◽  
Fei Wang ◽  
Lepeng Huang ◽  
Neng Wang ◽  
Xuanyi Xue

Sign in / Sign up

Export Citation Format

Share Document