Shade tree identity rather than diversity influences soil macrofauna in cacao-based agroforestry systems

Pedobiologia ◽  
2021 ◽  
pp. 150770
Author(s):  
G.X. Rousseau ◽  
O. Deheuvels ◽  
D. Celentano ◽  
I.R. Arias ◽  
L.M. Hernández-García ◽  
...  
2019 ◽  
Vol 17 (3) ◽  
pp. 105
Author(s):  
Leónides Castellanos González ◽  
Ana Francisca González Pedraza ◽  
Alfonso Eugenio Capacho Mogollón

El proyecto Plantar (Desarrollo estratégico agroecológico con uso de TIC para el fortalecimiento de cultivos promisorios en el Departamento de Norte de Santander) se desarrolló desde en enero de 2018 y a junio de 2019 en los municipios Arboledas, Convención, La Playa, La Esperanza, Ocaña y Mutiscua.  El objetivo del trabajo fue evaluar la Influencia de 18 sistemas agroforestales del Proyecto Plantar sobre la macrofauna del suelo después de implementados los mismos en los seis municipios. Se compararon las variables de biodiversidad de la macrofauna en dos muestreos (abundancia, Índice de riqueza específica, índice de diversidad de especies de Margalef, índice de equidad de abundancia de Shannon-Wiener e índice de dominancia de Simpson), uno antes de sembrar los cultivos y otro al año de establecidos.  Se realizaron análisis descriptivos de las variables estudiadas para las variables de modelos agroecológico. El establecimiento de los cultivos en los sistemas agroforestales tuvo impactos negativos y positivos sobre la macrofauna del suelo, al parecer debido a la heterogeneidad de la cobertura vegetal y del uso de suelo de las parcelas que aportaron los agricultores al proyecto. Al analizar la abundancia de la macrofauna se verifica que esta disminuye en todos los municipios, sin embargo, un análisis más detenido de otras variables como la riqueza y diversidad de especies, la equidad y la dominancia dentro de los modelos y grupos biológicos aportan resultados más favorables que cuando se analiza solamente de la abundancia. Palabras clave: Biodiversidad, abundancia, equidad, dominancia, modelos agroecológicos. 


2017 ◽  
Vol 247 ◽  
pp. 172-181 ◽  
Author(s):  
Maike Nesper ◽  
Christoph Kueffer ◽  
Smitha Krishnan ◽  
Cheppudira G. Kushalappa ◽  
Jaboury Ghazoul

2020 ◽  
Vol 304 ◽  
pp. 107125
Author(s):  
Marie Sauvadet ◽  
Richard Asare ◽  
Marney E. Isaac

2018 ◽  
Vol 53 (12) ◽  
pp. 1383-1391 ◽  
Author(s):  
Leonardo Rodríguez Suárez ◽  
Yuli Tatiana Paladines Josa ◽  
Erika Judith Astudillo Samboni ◽  
Karla Dayana Lopez Cifuentes ◽  
Ervin Humprey Durán Bautista ◽  
...  

Abstract: The objective of this work was to evaluate the soil macrofauna and the bioindicator taxonomic groups associated with different land uses in the Colombian Amazon. Twelve agroforestry arrangements were studied and compared with to the native forest and pasture. For each land use, six monoliths were randomly selected and divided into four layers (litter, and 0-10, 10-20, and 20-30 cm soil depths). The variables considered in the analysis of land use effects were: individuals per square meter, order richness, Shannon’s diversity index, and Pielou’s evenness index. The greatest values for soil macrofauna density and diversity occurred in the forest, in contrast with the pasture. The principal component analysis distinguished land use according to macrofauna diversity, separating the native forest from the other land uses. The cluster analysis indicated the potential of some agroforestry systems to conserve the values of soil macrofauna density and diversity similar to those of the forest. According to the analysis of indicator value, five taxonomic groups (Diplura, Pseudoscorpionida, Araneae, Chilopoda, and Gastropoda), identified as bioindicators, are associated with preserved sites because of the sensitivity of their populations.


2009 ◽  
Vol 44 (8) ◽  
pp. 1056-1062 ◽  
Author(s):  
Esperanza Huerta ◽  
Christian Kampichler ◽  
Violette Geissen ◽  
Susana Ochoa-Gaona ◽  
Ben de Jong ◽  
...  

The objective of this work was to construct a simple index based on the presence/absence of different groups of soil macrofauna to determine the ecological quality of soils. The index was tested with data from 20 sites in South and Central Tabasco, Mexico, and a positive relation between the model and the field observations was detected. The index showed that diverse agroforestry systems had the highest soil quality index (1.00), and monocrops without trees, such as pineapple, showed the lowest soil quality index (0.08). Further research is required to improve this model for natural systems that have very low earthworm biomass (<10 g m-2) and a high number of earthworm species (5-7), as it is in the tropical rain forest, whose soil quality index was medium (0.5). The application of this index will require an illustrated guide for its users. Further studies are required in order to test the use of this index by farmers.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 195
Author(s):  
Jennifer E. Schmidt ◽  
Alana Firl ◽  
Hamran Hamran ◽  
Nur Insana Imaniar ◽  
Taylor M. Crow ◽  
...  

Cacao agroforestry systems offer the potential to diversify farmer income sources, enhance biodiversity, sequester carbon, and deliver other important ecosystem services. To date, however, studies have emphasized field- and system-scale outcomes of shade tree integration, and potential impacts on the rhizosphere of adjacent cacao trees have not been fully characterized. Interactions at the root–soil interface are closely linked to plant health and productivity, making it important to understand how diverse shade tree species may affect soil fertility and microbial communities in the cacao rhizosphere. We assessed the impacts of neighboring shade tree presence and identity on cacao yields and physical, chemical, and biological components of the cacao rhizosphere in a recently established diversified agroforestry system in South Sulawesi, Indonesia. Stepwise regression revealed surprising and strong impacts of microbial diversity and community composition on cacao yields and pod infection rates. The presence of neighboring shade trees increased nitrogen, phosphorus, and pH in the rhizosphere of nearby cacao trees without yield losses. Over a longer time horizon, these increases in rhizosphere soil fertility will likely increase cacao productivity and shape microbial communities, as regression models showed nitrogen and phosphorus in particular to be important predictors of cacao yields and microbiome diversity and composition. However, neither presence nor identity of shade trees directly affected microbial diversity, community composition, or field-scale distance-decay relationships at this early stage of establishment. These results highlight locally specific benefits of shade trees in this agroecological context and emphasize the rhizosphere as a key link in indirect impacts of shade trees on cacao health and productivity in diversified systems.


2021 ◽  
Vol 10 (10) ◽  
pp. e580101019144
Author(s):  
Rafaela Martins da Silva ◽  
Rakiely Martins da Silva ◽  
Sandra Santana de Lima ◽  
Jianne Rafaela Mazzini de Souza ◽  
Jheny Kesley Mazzini de Souza ◽  
...  

The objective of this study was to evaluate soil macrofauna as a bioindicator of soil quality in successional agroforestry systems and secondary forests. The study was conducted in the southern lower region of Bahia in Brazil, in two areas: a successional agroforestry system (AFS18) and native forest (NF).  AFS18 consists of two species: mahogany (Khaya ivorensis and Khaya grandifoliola), açaí (Euterpe oleracea), cacao (Theobroma cacau) and banana (Musa spp.).  Sampling was carried out in the dry (June) and rainy (October) seasons of 2019, and eight soil monoliths were collected in both areas.  A total of 889 individuals from the soil macrofauna were sampled. The highest frequency (RF) of taxons occurred in NF in the rainy season, and the groups that stood out were: Oligochaeta with 42% FR in ASF18, Formicide with 33.9% in NF and Isoptera with 58% in AFS18. The macrofauna structure of the soil varied according to the time of collection. The density of macrofauna individuals differed between areas only in the dry season. The highest number of ind.m² was observed in the area NF (378) when compared to ASF18 (196). TOC, Mg2+, Al3+ and CTC were related to AF on both occasions of collection and AFS18 in the rainy season, K+, P and pH were associated with AFS18 in the dry season. The diversity, equitability and richness of the soil macrofauna was greater in AF area. HFA18 in the rainy season was similar to NF, favoring colonization of the area by soil macrofauna organisms.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 963 ◽  
Author(s):  
Sigrun Wagner ◽  
Clement Rigal ◽  
Theresa Liebig ◽  
Rudolf Mremi ◽  
Andreas Hemp ◽  
...  

Research Highlights: Global coffee production, especially in smallholder farming systems, is vulnerable and must adapt in the face of climate change. To this end, shaded agroforestry systems are a promising strategy. Background and Objectives: Understanding local contexts is a prerequisite for designing locally tailored systems; this can be achieved by utilizing farmers’ knowledge. Our objective is to explore ecosystem services (ESs) provided by different shade tree species as perceived by farmers and possible factors (elevation, gender, and membership in local farmers groups) influencing these perceptions. We related these factors, as well as farmers’ ESs preferences, to planting densities of tree species. Materials and Methods: During interviews with 263 small-scale coffee farmers on the southern slope of Mt. Kilimanjaro, they ranked the most common shade tree species according to perceived provision of the locally most important ESs for coffee farmers. We asked them to estimate the population of each tree species on their coffee fields and to identify the three ESs most important for their household. Results: Food, fodder, and fuelwood emerged as the most important ESs, with 37.8% of the respondents mentioning all three as priorities. Density of tree species perceived to provide these three ESs were significantly higher for farmers prioritizing these services compared to farmers that did not consider all three ESs in their top three. Albizia schimperiana scored the highest for all rankings of regulatory ESs such as coffee yield improvement, quality shade provision, and soil fertility improvement. Influence of elevation, gender, and farmer group affiliation was negligible for all rankings. Conclusions: This study shows the need to understand factors underlying farmers’ management decisions before recommending shade tree species. Our results led to the upgrade of the online tool (shadetreeadvice.org) which generates lists of potential common shade tree species tailored to local ecological context considering individual farmers’ needs.


2012 ◽  
Vol 146 (1) ◽  
pp. 179-196 ◽  
Author(s):  
Helton Nonato de Souza ◽  
Ron G.M. de Goede ◽  
Lijbert Brussaard ◽  
Irene M. Cardoso ◽  
Edivania M.G. Duarte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document