scholarly journals Impacts of Shade Trees on the Adjacent Cacao Rhizosphere in a Young Diversified Agroforestry System

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 195
Author(s):  
Jennifer E. Schmidt ◽  
Alana Firl ◽  
Hamran Hamran ◽  
Nur Insana Imaniar ◽  
Taylor M. Crow ◽  
...  

Cacao agroforestry systems offer the potential to diversify farmer income sources, enhance biodiversity, sequester carbon, and deliver other important ecosystem services. To date, however, studies have emphasized field- and system-scale outcomes of shade tree integration, and potential impacts on the rhizosphere of adjacent cacao trees have not been fully characterized. Interactions at the root–soil interface are closely linked to plant health and productivity, making it important to understand how diverse shade tree species may affect soil fertility and microbial communities in the cacao rhizosphere. We assessed the impacts of neighboring shade tree presence and identity on cacao yields and physical, chemical, and biological components of the cacao rhizosphere in a recently established diversified agroforestry system in South Sulawesi, Indonesia. Stepwise regression revealed surprising and strong impacts of microbial diversity and community composition on cacao yields and pod infection rates. The presence of neighboring shade trees increased nitrogen, phosphorus, and pH in the rhizosphere of nearby cacao trees without yield losses. Over a longer time horizon, these increases in rhizosphere soil fertility will likely increase cacao productivity and shape microbial communities, as regression models showed nitrogen and phosphorus in particular to be important predictors of cacao yields and microbiome diversity and composition. However, neither presence nor identity of shade trees directly affected microbial diversity, community composition, or field-scale distance-decay relationships at this early stage of establishment. These results highlight locally specific benefits of shade trees in this agroecological context and emphasize the rhizosphere as a key link in indirect impacts of shade trees on cacao health and productivity in diversified systems.

2020 ◽  
Vol 23 (2) ◽  
pp. 75-88
Author(s):  
Jorge Alberto Rangel Mendoza ◽  
Amanda Silva Parra

The objective of this study was to determine the effect of Agroforestry systems (AFS) and non-AFS of Theobroma cacao L. on soil and leaf litter quality, during rainy (RS) and dry (DS) seasons in a tropical zone. The treatments were T. cacao crop (CC), Yopo forestry (Anadenanthera peregrina L.) Speg. (YF), Acacia forestry (Acacia mangium Willd.) (AF), Agroforestry system of T. cacao + Yopo forestry (CYF), Agroforestry system of T. cacao + Acacia forestry (CAF), arranged in random design in the field. Leaf litter production was highest in CC (0.79 and 0.73 ton.ha-1) during RS and DS, respectively. CC and AFS improved soil fertility, less Mg in CC; AFS leaf litter quality, CAF in DS and CYF in both seasons, less B and S in DS. AFS can be a solution in tropical zones to solve the problems of low soil fertility.


2015 ◽  
Vol 4 (2) ◽  
pp. 136-146 ◽  
Author(s):  
Kamal Eldin Mohammed Fadl ◽  
Ali Elamin Abdallah Ahmed

This study was conducted in Eltemada, Boli and Umghoghai villages at Babanosa area in El-salam locality, South Kordofan State during 2012 and 2013. The objectives were to (1) identify and assess the most important agroforestry systems, (2) to investigate the main factors that affecting the sustainability of the systems, (3) to determine the important field crops that cultivated with trees and (4) to evaluate the effect of the agroforestry systems on the yield of the traditional field crops. For accomplishment of these study 80 questioners was designed and distributed in the selected villages. After the data collection data was analyzed by using descriptive statistic. The results showed that the most important agroforestry systems in the study area are parkland cropping system (58%), boundary planting (26%), wind-breaks (13%) and alley cropping (3%).The most important forest trees in the study area are Acacia senegal (32%), Ziziphus spina- christia (28%), Balanites aegeyptiaca (26%), Sclerocary birrea and Guera senegalensis (3%). The main field crops in the study area are groundnut (44%), sorghum (35%) and roselle (21%). The results showed that yield of groundnut and sorghum is higher under agroforestry systems compared with the mono-cropping system. The results showed that the majority of respondents (70%) prefer to cultivate field crops in agroforestry system, while (30%) prefer to cultivate the field crops in a mono-cropping system. The cultivation methods used in the study area include shifting cultivation (52%), mono-cropping (36%) and intercropping (12%).The majority of respondents (94%) showed that trees improve soil fertility in their farm land. The benefits from trees in farm land include improvement of soil properties (36%), protecting the farm land from wind erosion (28%), improvement of micro-climate (24%) and source of income which was indicated by (12%) of the respondents. The study recommended that modern agroforestry system such as improved fallow system and alley cropping should be introduced in the study area and multi-purpose trees such as Acacia senegal, Fedherbia albida and Sclerocarya birrea that improve soil fertility and diversify farmers income should be maintained. DOI: http://dx.doi.org/10.3126/ije.v4i2.12633 International Journal of Environment Vol.4(2) 2015: 136-146


2019 ◽  
Vol 342 ◽  
Author(s):  
Lenka Ehrenbergerová ◽  
Zuzana Šeptunová ◽  
Hana Habrová ◽  
Ronald Hugo Puerta Tuesta ◽  
Radim Matula

Coffee is traditionally grown in agroforestry systems. Shade trees in coffee plantations provide important ecosystem services, and their timber may also be a good source of income for coffee growers. However, key information on the value of shade tree timber and its potential contribution to the income of coffee growers based on empirical data is lacking. The income that could be obtained from shade trees was estimated for three coffee plantations with different shade tree species. To estimate the marketable timber volume of standing trees, allometric equations were developed. Our results showed that the value of the shade tree timber varied significantly. It represented only 2-3% of the annual coffee farm income on the coffee plantation dominated by native Inga spp. On the other hand, the plantation predominantly shaded by Eucalyptus trees had high potential annual (50-68% of plantation income) and total (92-96% of plantation income) timber value, followed by the plantation shaded predominantly by Pinus (32-49% of plantation income for annual timber volume and 89-94% of plantation income for total timber volume). It is evident that shade trees may be a good economic reserve for coffee growers when exotic Eucalyptus or Pinus tree species are planted. However, using individual-tree data, it was found that the relatively rare native shade tree Retrophyllum rospigliosii, which was found in almost all plantations, has a high timber value and a large timber supply, making it a shade species with high potential for agroforestry.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Erin K Kenison ◽  
Obed Hernández-Gómez ◽  
Rod N Williams

Abstract Captive environments are maintained in hygienic ways that lack free-flowing microbes found in animals’ natural environments. As a result, captive animals often have depauperate host-associated microbial communities compared to conspecifics in the wild and may have increased disease susceptibility and reduced immune function. Eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) have suffered precipitous population declines over the past few decades. To bolster populations, eastern hellbenders are reared in captivity before being translocated to the wild. However, the absence of natural microbial reservoirs within the captive environment diminishes the diversity of skin-associated bacteria on hellbender skin and may negatively influence their ability to defend against pathogenic species once they are released into the wild. To prepare hellbenders for natural bacteria found in riverine environments, we devised a novel bioaugmentation method to increase the diversity of skin microbial communities within a captive setting. We exposed juvenile hellbenders to increasing amounts of river water over 5 weeks before translocating them to the river. We genetically identified and phylogenetically compared bacteria collected from skin swabs and river water for alpha (community richness) and beta (community composition) diversity estimates. We found that hellbenders exposed to undiluted river water in captivity had higher alpha diversity and distinct differentiation in the community composition on their skin, compared to hellbenders only exposed to well water. We also found strong evidence that hellbender skin microbiota is host-specific rather than environmentally driven and is colonized by rare environmental operational taxonomic units in river water. This technique may increase hellbender translocation success as increasing microbial diversity is often correlated with elevated disease resistance. Future work is necessary to refine our methods, investigate the relationship between microbial diversity and hellbender health and understand how this bioaugmentation technique influences hellbenders’ survival following translocation from captivity into the wild.


2021 ◽  
Vol 13 (15) ◽  
pp. 8540
Author(s):  
Marco Campera ◽  
Katherine Hedger ◽  
Hélène Birot ◽  
Sophie Manson ◽  
Michela Balestri ◽  
...  

Complex agroforestry systems can host similar biodiversity levels to adjacent continuous forests and can offer important ecosystem services for wildlife. Species inhabiting adjacent forests, as well as species that prefer agroforestry systems, can benefit from this habitat matrix. It is necessary, however, to understand the species-specific adaptability to such a complex matrix. Indonesia is a biodiversity hotspot and hosts many endemic species that are threatened with extinction. Its human population relies heavily on agriculture, meaning that finding a balance between crop productivity and biodiversity is key for the long-term sustainability of local communities and wildlife. We aim to determine the influence of the presence of shade trees and distance to the forest on the detection rates of wildlife in coffee home gardens. In West Java, Indonesia, we monitored 23 gardens between April 2018 and March 2021 via camera traps, totalling 3856 days of monitoring in shade-grown and 3338 days in sun-exposed gardens. We also collected data in the nearby montane rainforest, totalling 1183 days of monitoring. We used Generalized Additive Models to estimate the influence of shade cover and distance to the forest on the detection rates of wildlife. The Sunda leopard cat Prionailurus javanensis was found more frequently in shade-grown gardens and used both the forest and agroforest matrix. Wild boars Sus scrofa mostly occurred in gardens adjacent to the forest, while barred buttonquails Turnix suscitator were associated with gardens far (>1 km) from the forest. Several species (civets Viverricula indica and Paradoxus musangus javanicus, Horsfield’s treeshrew Tupaia javanica, Javan ferret badger Melogale orientalis, Javan mongoose Herpestes javanicus) were not influenced by shade cover and distance to the forest, suggesting they are well adapted to the agroforestry system. Still, species of high conservation importance, such as Javan leopard Panthera pardus melas, Sunda porcupine Hystrix javanica, and grizzled langur Presbytis comata, were present in the forest but not in the agroforest, suggesting that the replacement of the forest by the agroforestry matrix is still detrimental. Nevertheless, it is important to maintain the complexity of the agroforestry system and connectivity with the neighbouring continuous forest to favour the long-term sustainability of this environment and the conservation of endemic species.


2020 ◽  
pp. 15-21
Author(s):  
Arindam Ghosh ◽  
Soumya Majumder ◽  
Sumedha Saha ◽  
Malay Bhattacharya

Beneficial properties of shade trees of tea plantations other than their medicinal properties have been extensively studied. This research was initiated to explore the properties of some shade trees with special emphasis on their antioxidant and antibacterial properties. Leaves from shade tree like Dalbergia sissoo (DS), Cassia siamea (CS), Derris robusta (DR), Leucaena leucocephala (LL), Acacia lenticularis (AL) and Melia azedarach (MA) were used for the study. Characterization of shade tree leaves by determination of moisture, crude fibre and ash content and tests of non polar – polar solvent extracts for steroid, tannins, cardiac glycosides and coumarin, free radical scavenging, ferric reducing power, NO scavenging activities, quantification of Flavonoids and antibacterial activity were conducted. The average moisture, crude fibre and ash percentage of shade tree plants were found to be 62.95, 11.28 and 1.86 respectively. Methanol, ethanol, acetone and ethyl acetate respectively proved to be the most potent solvent for various phytochemical extractions as it gave positive results for tests like tannin, steroid, cardiac glycosides and coumarin. AL (91.46%), DR (92.69%), LL (94.32%) and MA (93.34%) leaf extracts showed a high level of DPPH scavenging activity in their water extracts. In DS (88.11%) and CS (83.23%) maximum DPPH scavenging activity was observed in Diethyl ether and Methanol extracts respectively.  Acetone extracts were more active than the water extracts in exhibiting ferric reducing power and NO scavenging activity. Summation of the quantity revealed that DS showed maximum presence of flavonoids and acetone as most potential for isolation of flavonoids. The decreasing order of summative antibacterial activity was recorded in DS, followed by CS, DR, AL, MA and LL. Chloroform showed the highest summative inhibition zone followed by ethanol, ethyl acetate, diethyl ether, acetone, water,  hexane, benzene and methanol. The antioxidant and antibacterial potential of shade trees were established.


Author(s):  
V. T. Sinegovskaya ◽  
E. T. Naumchenko

The article presents the results of comparative evaluation of the efficiency of the long-term application of mineral and organic fertilizers in the crop rotation system. It was found that the application of the mineral fertilizer system increased the value of hydrolytic acidity of the soil from 4,30 to 5,29 mg-eq per 100 g of soil, the indicator of metabolic acidity decreased from 5,2 to 4,9 pH units. By the end of the 11th rotation for both fertilizer systems, the content of mobile phosphorus increased by more than 4 times relative to the initial value, its mobility indicator – by 2,2-3,2 times compared with the control. The use of the organo-mineral system was accompanied by an increase in the content of humus by 0,35 % and a decrease in the C:N ratio from 11,2 to 8,9. The increased productivity of wheat was revealed when applying nitrogen and nitrogen-phosphorus fertilizers against the background of prolonged use of the mineral and organo-mineral fertilizer system. The change in wheat productivity by 56 % depended on the content of mineral nitrogen, mobile phosphorus, humus in the topsoil, and on the phosphate ion mobility. Soybean productivity depended on soil fertility indicators only by 24 %: the relationship between soybean productivity and the mineral forms of nitrogen and phosphorus is weak and direct, between productivity and P2O5 mobility - weak and inverse, with humus - moderate and direct.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danijela Šantić ◽  
Kasia Piwosz ◽  
Frano Matić ◽  
Ana Vrdoljak Tomaš ◽  
Jasna Arapov ◽  
...  

AbstractBacteria are an active and diverse component of pelagic communities. The identification of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profile, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classified the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more differentiated by depth than by area, with temperature and identified salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identified genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium-related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors affecting picoplankton in the open sea environment.


Sign in / Sign up

Export Citation Format

Share Document