High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization

2015 ◽  
Vol 108 ◽  
pp. 1-8 ◽  
Author(s):  
Christian Zerfaß ◽  
Sandra Braukmann ◽  
Sandor Nietzsche ◽  
Stephan Hobe ◽  
Harald Paulsen
Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 511
Author(s):  
Giovanni Covaleda-Cortés ◽  
Martha Hernández ◽  
Sebastián Alejandro Trejo ◽  
Manuel Mansur ◽  
Sergi Rodríguez-Calado ◽  
...  

A very powerful proteinaceous inhibitor of metallocarboxypeptidases has been isolated from the marine snail Nerita versicolor and characterized in depth. The most abundant of four, very similar isoforms, NvCla, was taken as reference and N-terminally sequenced to obtain a 372-nucleotide band coding for the protein cDNA. The mature protein contains 53 residues and three disulphide bonds. NvCIa and the other isoforms show an exceptionally high inhibitory capacity of around 1.8 pM for human Carboxypeptidase A1 (hCPA1) and for other A-like members of the M14 CPA subfamily, whereas a twofold decrease in inhibitory potency is observed for carboxypeptidase B-like members as hCPB and hTAFIa. A recombinant form, rNvCI, was produced in high yield and HPLC, mass spectrometry and spectroscopic analyses by CD and NMR indicated its homogeneous, compact and thermally resistant nature. Using antibodies raised with rNvCI and histochemical analyses, a preferential distribution of the inhibitor in the surface regions of the animal body was observed, particularly nearby the open entrance of the shell and gut, suggesting its involvement in biological defense mechanisms. The properties of this strong, small and stable inhibitor of metallocarboxypeptidases envisage potentialities for its direct applicability, as well as leading or minimized forms, in biotechnological/biomedical uses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Axel Abelein ◽  
Gefei Chen ◽  
Kristīne Kitoka ◽  
Rihards Aleksis ◽  
Filips Oleskovs ◽  
...  

AbstractDuring storage in the silk gland, the N-terminal domain (NT) of spider silk proteins (spidroins) keeps the aggregation-prone repetitive region in solution at extreme concentrations. We observe that NTs from different spidroins have co-evolved with their respective repeat region, and now use an NT that is distantly related to previously used NTs, for efficient recombinant production of the amyloid-β peptide (Aβ) implicated in Alzheimer’s disease. A designed variant of NT from Nephila clavipes flagelliform spidroin, which in nature allows production and storage of β-hairpin repeat segments, gives exceptionally high yields of different human Aβ variants as a solubility tag. This tool enables efficient production of target peptides also in minimal medium and gives up to 10 times more isotope-labeled monomeric Aβ peptides per liter bacterial culture than previously reported.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Thomas Brunschwiler ◽  
Gerd Schlottig ◽  
Songbo Ni ◽  
Yu Liu ◽  
Javier V. Goicochea ◽  
...  

This work presents enhanced composite joints that support both electrical and thermal transport in electronic packages. The joints are sequentially formed by applying a nanoparticle suspension, evaporating a solvent, self-assembling of nanoparticles by capillary bridging, and the formation of so called “necks” between micrometer-sized features. This sequence is used to either form low temperature electrical joints under copper pillars or enhanced percolating thermal underfills (ePTU) with areal contacts between filler particles of the composite. The report discusses processing aspects of the capillary bridges evolution and of uniform neck formation, it discusses strategies to achieve mechanically stable necks, and it compares the performance of the achieved joints against state-of-the-art solutions. The capillary bridge evolution during liquid evaporation was investigated in copper pillar arrays and random particle beds. The vapor–liquid interface first penetrates locations of low pillar or particle density resulting in a dendritic fluid network. Once the network breaks up, individual necks form. For aqueous nanosuspensions, highly uniform necks with high yield were obtained by evaporation at 60 °C. Isothermal conditions were preferred to yield equal neck counts at the cavity's top and bottom surfaces. Mechanically stable silver necks required an annealing at only 150 °C, dielectric necks an annealing at 140 °C with a bimodal approach. Therein polystyrene (PS) nanoparticles occupy interstitial positions in densly packed alumina necks, then melt and adhere to the alumina. The electrical necks showed a shear strength of 16 MPa, equivalent to silver joints used in power electronic packages. The thermal necks yielded a thermal conductivity of up to 3.8 W/mK, five-fold higher than commercially available capillary thermal underfills.


2021 ◽  
Author(s):  
Pradipta Banerjee ◽  
Mayur Bajaj ◽  
Chetna Bhat ◽  
Y Geethika ◽  
Hemanth Irle

AbstractThis study had a two-fold objective: To utilize collagen hydrolysate for synthesizing a nanoscale Hydroxyapatite (HA) coating that would act as a superior osteoblast adhesion/proliferation agent compared to collagen-derived HA (C/HA) and to comprehend the significant role played by structural constraints on HA nucleation. Collagen was extracted from pacu skin with a high yield of 65.3% (w/w of tissue). It was digested by collagenase and the hydrolysate (CH) was purified with a high yield of 0.68g/g of collagen. The CH peptides had a mass of 6kDa, a predominant PP-II conformation and formed self-assembling hierarchical structures at physiological pH with dimensions of 842.2±229nm. The HA synthesized on CH (CH/HA) displayed higher yield when compared to C/HA. Structural analysis of CH/HA revealed that the PP-II peptides coiled to form mimic-helical moieties with reduced intermolecular packing distance of 0.9nm. The mimic helices cross-linked to form a vast quasi-fibrillar network that was comparatively smaller than collagen fibrils but exhibited enhanced stability and greater dynamicity. CH/HA displayed intense calcium-carboxyl interactions, sharper diffraction planes, smaller size of 48±6.2nm and a Ca/P ratio closer to 1.69 when compared to C/HA along with displaying serrated edge blooming crystals. Because of the small size, the CH/HA nanocrystals displayed significantly better osteoblast adhesion than C/HA and reduced the doubling time of cells. Overall, the results indicated that CH based nanocomposites displayed suitable morphological characteristics and cellular response for potential application as implant and bone graft coating material.Graphical abstract


2012 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Abhinav Prakash ◽  
Stephen J Parsons ◽  
Stuart Kyle ◽  
Michael J McPherson

Author(s):  
Thomas Brunschwiler ◽  
Gerd Schlottig ◽  
Songbo Ni ◽  
Yu Liu ◽  
Javier V. Goicochea ◽  
...  

This work presents enhanced composite joints that support both electrical or thermal transport in electronic packages. The joints are sequentially formed by applying a nanoparticle suspension, evaporating a solvent, self-assembling of nanoparticles by capillary bridging, and the formation of so called “necks” between micron-sized features. This sequence is used to either form low temperature electrical joints under copper pillars or enhanced percolating thermal underfills with areal contacts between filler particles of the composite. The report discusses processing aspects of the capillary bridges evolution and of uniform neck formation, it discusses strategies to achieve mechanically stable necks, and it compares the performance of the achieved joints against state-of-the-art solutions. The capillary bridge evolution during liquid evaporation was investigated in copper pillar arrays and random particle beds. The vapor-liquid interface first penetrates locations of low pillar or particle density resulting in a dendritic fluid network. Once the network breaks up individual necks form. For aqueous nano-suspensions highly uniform necks with high yield were obtained by evaporation at 60°C. Isothermal conditions were preferred to yield equal neck counts at the cavity’s top and bottom surfaces. Mechanically stable silver necks required an annealing at only 150°C, dielectric necks an annealing at 140°C with a bi-modal approach. Therein polystyrene nanoparticles occupy interstitial positions in densly packed alumina necks, then melt and adhere to the alumina. The electrical necks showed a shear strength of 16 MPa, equivalent to silver joints used in power electronic packages. The thermal necks yielded a thermal conductivity of up to 3.8 W/mK, 5-fold higher than commercially available capillary thermal underfills.


ChemInform ◽  
2010 ◽  
Vol 41 (16) ◽  
Author(s):  
Michael J. McPherson ◽  
Kier James ◽  
Stuart Kyle ◽  
Stephen Parsons ◽  
Jessica Riley

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Kerstin Fiege ◽  
Nicole Frankenberg-Dinkel

Abstract Background Heme proteins and heme-derived molecules are essential in numerous cellular processes. Research into their in vitro functionality requires the production of large amounts of protein. Unfortunately, high yield expression is hampered by the lack of E. coli strains naturally capable of taking up heme from the medium. We recently reported the use of the probiotic E. coli strain Nissle 1917 (EcN) to sufficiently produce heme containing proteins, as it encodes the outer membrane heme receptor, ChuA, which allows for natural uptake of heme. The EcN strain however lacks the gene for T7 RNA polymerase, which is necessary for the expression of genes under the control of the T7-promotor, widely used in expression vectors like the pET or pDuet series. Results A new T7-promoter compatible EcN strain was constructed by integrating the gene for T7-RNA polymerase under the control of a lacUV5 promoter into the malEFG operon of EcN. Test expressions of genes via T7 promoter-based vectors in the new EcN(T7) strain were successful. Expression in EcN(T7) resulted in the efficient production of recombinant heme proteins in which the heme cofactor was incorporated during protein production. In addition, the new EcN(T7) strain can be used to co-express genes for the production of heme-derived molecules like biliverdin or other linear tetrapyrroles. We demonstrate the successful recombinant production of the phytochromes BphP, from Pseudomonas aeruginosa, and Cph1, from Synechocystis sp. PCC6803, loaded with their linear tetrapyrrole cofactors, biliverdin and phycocyanobilin, respectively. Conclusion We present a new E. coli strain for efficient production of heme proteins and heme-derived molecules using T7-promoter based expression vectors. The new EcN(T7) strain enables the use of a broader spectrum of expression vectors, as well as the co-expression of genes using the pDuet expression vectors, for expressing heme containing proteins. By utilizing E. coli strains EcN and EcN(T7), capable of being fed heme, the rate limiting step of heme biosynthesis in E. coli is eliminated, thereby permitting higher heme saturation of heme proteins and also higher yields of heme-derived molecules.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 218
Author(s):  
Tong Luo ◽  
Chao Wang ◽  
Xingxiang Ji ◽  
Guihua Yang ◽  
Jiachuan Chen ◽  
...  

Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery, energy storage, and environmental governance. In this study, we developed a simple and sustainable synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the pH of the system. Their diameter is in the range of 20–200 nm and they show excellent dispersibility and superior long-term stability. The method of preparing LNPs from lignin–DES with water as an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the advancement of lignin-based nanotechnology.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Mazda Rad-Malekshahi ◽  
Matthias Flement ◽  
Wim E Hennink ◽  
Enrico Mastrobattista

Sign in / Sign up

Export Citation Format

Share Document