The effects of CGRP on calcium transients of dedifferentiating cultured adult rat cardiomyocytes compared to non-cultured adult cardiomyocytes: possible protective and deleterious results in cardiac function

Peptides ◽  
2005 ◽  
Vol 26 (3) ◽  
pp. 525-530 ◽  
Author(s):  
Mya C. Schiess ◽  
Brian J. Poindexter ◽  
Brandon S. Brown ◽  
Roger J. Bick
2004 ◽  
Vol 382 (2) ◽  
pp. 411-416 ◽  
Author(s):  
Katrina A. BICKNELL ◽  
Carmen H. COXON ◽  
Gavin BROOKS

Repair of the mature mammalian myocardium following injury is impaired by the inability of the majority of cardiomyocytes to undergo cell division. We show that overexpression of the cyclin B1–CDC2 (cell division cycle 2 kinase) complex re-initiates cell division in adult cardiomyocytes. Thus strategies targeting the cyclin B1–CDC2 complex might re-initiate cell division in mature cardiomyocytes in vivo and facilitate myocardial regeneration following injury.


2010 ◽  
Vol 298 (2) ◽  
pp. H360-H366 ◽  
Author(s):  
Thane G. Maddaford ◽  
Elena Dibrov ◽  
Cecilia Hurtado ◽  
Grant N. Pierce

The Na+/Ca2+ exchanger (NCX) is proposed to be an important protein in the regulation of Ca2+ movements in the heart. This Ca2+ regulatory action is thought to modulate contractile activity in the heart under normal physiological conditions and may contribute to the Ca2+ overload that occurs during ischemic reperfusion challenge. To evaluate these hypotheses, adult rat cardiomyocytes were exposed to an adenovirus that codes for short hairpin RNA (shRNA) targeting NCX gene expression through RNA interference. An adenovirus transcribing a short RNA with a scrambled nucleotide sequence was compared with the NCX-shRNA nucleotide sequence and used as a control. Freshly isolated rat cardiomyocytes were infected with virus for 48 h before examination. Cardiomyocytes maintained their characteristic morphological appearance during this short time period after isolation. NCX expression was inhibited by up to ∼60% by the shRNA treatment as determined by Western blot analysis. The depletion in NCX protein was accompanied by a significant depression of NCX activity in shRNA-treated cells. Ca2+ homeostasis was unaltered in the shRNA-treated cells upon electrical stimulation compared with control cells. However, when cardiomyocytes were exposed to a simulated ischemic solution, NCX-depleted cells were significantly protected from the rise in cytoplasmic Ca2+ and damage that was detected in control cells during ischemia and reperfusion. Our data support the role for NCX in ischemic injury to the heart and demonstrate the usefulness of altering gene expression with an adenoviral-delivery system of shRNA in adult cardiomyocytes.


1989 ◽  
Vol 257 (5) ◽  
pp. C957-C963 ◽  
Author(s):  
Q. Li ◽  
Z. Guan ◽  
B. A. Biagi ◽  
B. T. Stokes ◽  
R. A. Altschuld

The effects of hyperthyroidism on electrophysiological properties and intracellular free calcium transients in single adult rat cardiomyocytes were studied using conventional microelectrodes and time-resolved single cell fura-2 fluorescence microscopy. Under control conditions, resting membrane potentials and triggered action potentials were not different in euthyroid and hyperthyroid myocytes. Calcium transients produced by electrical stimulation, however, were markedly abbreviated in hyperthyroid myocytes. During a train of stimuli, the duration of the calcium transients at half peak amplitude (half time) was 124 +/- 14 ms at the fifth beat in hyperthyroid cells vs. 287 +/- 35 ms in euthyroid cells. Isoproterenol (1 microM) prolonged time to 50% repolarization (APD50) of the action potentials and increased the peak calcium transients in both euthyroid and hyperthyroid myocytes. It also shortened the half time of the calcium transients in euthyroid myocytes but had little effect on the half time in hyperthyroid cells. These data are consistent with the electrophysiology and mechanical performance in intact euthyroid and hyperthyroid cardiac tissues, and the intrinsic changes in hyperthyroid tissues can therefore be illustrated in single ventricular myocytes. Furthermore, the results suggest that alterations in intracellular calcium handling by sarcoplasmic reticulum may account for contractile changes of the heart induced by hyperthyroidism.


2004 ◽  
Vol 286 (3) ◽  
pp. H1124-H1132 ◽  
Author(s):  
Dacia L. Hunton ◽  
LuYun Zou ◽  
Yi Pang ◽  
Richard B. Marchase

Capacitative Ca2+ entry (CCE) refers to the influx of Ca2+ through plasma membrane channels activated on depletion of endoplasmic-sarcoplasmic reticulum Ca2+ stores. We utilized two Ca2+-sensitive dyes (one monitoring cytoplasmic free Ca2+ and the other free Ca2+ within the sarcoplasmic reticulum) to determine whether adult rat ventricular myocytes exhibit CCE. Treatments with inhibitors of the sarcoplasmic endoplasmic reticulum Ca2+-ATPases were not efficient in releasing Ca2+ from stores. However, when these inhibitors were coupled with either Ca2+ ionophores or angiotensin II (an agonist generating inositol 1,4,5 trisphosphate), depletion of stores was observed. This depletion was accompanied by a significant influx of extracellular Ca2+ characteristic of CCE. CCE was also observed when stores were depleted with caffeine. This influx of Ca2+ was sensitive to four inhibitors of CCE (glucosamine, lanthanum, gadolinium, and SKF-96365) but not to inhibitors of L-type channels or the Na+/Ca2+ exchanger. In the whole cell configuration, an inward current of ∼0.7 pA/pF at –90 mV was activated when a Ca2+ chelator or inositol (1,4,5)-trisphosphate was included in the pipette or when Ca2+ stores were depleted with a Ca2+-ATPase inhibitor and ionophore. The current was maximal at hyperpolarizing voltages and inwardly rectified. The channel was relatively permeant to Ca2+ and Ba2+ but only poorly to Mg2+ or Mn2+. Taken together, these data support the existence of CCE in adult cardiomyocytes, a finding with likely implications to physiological responses to phospholipase C-generating agonists.


Circulation ◽  
2004 ◽  
Vol 109 (3) ◽  
pp. 406-411 ◽  
Author(s):  
Michel Cailleret ◽  
Aïssata Amadou ◽  
Nathalie Andrieu-Abadie ◽  
Artur Nawrocki ◽  
Christophe Adamy ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6348 ◽  
Author(s):  
Thomas Kubin ◽  
Ayse Cetinkaya ◽  
Natalia Kubin ◽  
Peter Bramlage ◽  
Bedriye Sen-Hild ◽  
...  

Fetal and hypertrophic remodeling are hallmarks of cardiac restructuring leading chronically to heart failure. Since the Ras/Raf/MEK/ERK cascade (MAPK) is involved in the development of heart failure, we hypothesized, first, that fetal remodeling is different from hypertrophy and, second, that remodeling of the MAPK occurs. To test our hypothesis, we analyzed models of cultured adult rat cardiomyocytes as well as investigated myocytes in the failing human myocardium by western blot and confocal microscopy. Fetal remodeling was induced through endothelial morphogens and monitored by the reexpression of Acta2, Actn1, and Actb. Serum-induced hypertrophy was determined by increased surface size and protein content of cardiomyocytes. Serum and morphogens caused reprogramming of Ras/Raf/MEK/ERK. In both models H-Ras, N-Ras, Rap2, B- and C-Raf, MEK1/2 as well as ERK1/2 increased while K-Ras was downregulated. Atrophy, MAPK-dependent ischemic resistance, loss of A-Raf, and reexpression of Rap1 and Erk3 highlighted fetal remodeling, while A-Raf accumulation marked hypertrophy. The knock-down of B-Raf by siRNA reduced MAPK activation and fetal reprogramming. In conclusion, we demonstrate that fetal and hypertrophic remodeling are independent processes and involve reprogramming of the MAPK.


2006 ◽  
Vol 290 (4) ◽  
pp. H1493-H1502 ◽  
Author(s):  
Rumi Maruyama ◽  
Genzou Takemura ◽  
Noritsugu Tohse ◽  
Tomoko Ohkusa ◽  
Yasuhiro Ikeda ◽  
...  

During early apoptosis, adult cardiomyocytes show unusual beating, suggesting possible participation of abnormal Ca2+ transients in initiation of apoptotic processes in this cell type. Simultaneously with the beating, these cells show dynamic structural alteration resulting from cytoskeletal disintegration that is quite rapid. Because of the specialized structure and extensive cytoskeleton of cardiomyocytes, we hypothesized that its degradation in so short a time would require a particularly efficient mechanism. To better understand this mechanism, we used serial video microscopy to observe β-adrenergic stimulation-induced apoptosis in isolated adult rat cardiomyocytes while simultaneously recording intracellular Ca2+ concentration and cell length. Trains of Ca2+ transients and corresponding rhythmic contractions and relaxations (beating) were observed in apoptotic cells. Frequencies of Ca2+ transients and beating gradually increased with time and were accompanied by cellular shrinkage. As the cells shrank, amplitudes of Ca2+ transients declined and diastolic intracellular Ca2+ concentration increased until the transients were lost. Beating and progression of apoptosis were significantly inhibited by antagonists against the L-type Ca2+ channel (nifedipine), ryanodine receptor (ryanodine), inositol 1,4,5-trisphosphate receptor (heparin), sarco(endo)plasmic Ca2+-ATPase (thapsigargin), and Na+/Ca2+ exchanger (KB-R7943). Electron-microscopic examination of beating cardiomyocytes revealed progressive breakdown of Z disks. Immunohistochemical analysis and Western blot confirmed that disappearance of Z disk constituent proteins (α-actinin, desmin, and tropomyosin) preceded degradation of other cytoskeletal proteins. It thus appears that, in adult cardiomyocyte apoptosis, Ca2+ transients mediate apoptotic beating and efficient sarcomere destruction initiated by Z disk breakdown.


2021 ◽  
Vol 120 (3) ◽  
pp. 340a
Author(s):  
Jan Nicolas Riesselmann ◽  
Tim Holler ◽  
Ante Radocaj ◽  
Joachim Meißner ◽  
Theresia Kraft ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document