Synchronous progression of calcium transient-dependent beating and sarcomere destruction in apoptotic adult cardiomyocytes

2006 ◽  
Vol 290 (4) ◽  
pp. H1493-H1502 ◽  
Author(s):  
Rumi Maruyama ◽  
Genzou Takemura ◽  
Noritsugu Tohse ◽  
Tomoko Ohkusa ◽  
Yasuhiro Ikeda ◽  
...  

During early apoptosis, adult cardiomyocytes show unusual beating, suggesting possible participation of abnormal Ca2+ transients in initiation of apoptotic processes in this cell type. Simultaneously with the beating, these cells show dynamic structural alteration resulting from cytoskeletal disintegration that is quite rapid. Because of the specialized structure and extensive cytoskeleton of cardiomyocytes, we hypothesized that its degradation in so short a time would require a particularly efficient mechanism. To better understand this mechanism, we used serial video microscopy to observe β-adrenergic stimulation-induced apoptosis in isolated adult rat cardiomyocytes while simultaneously recording intracellular Ca2+ concentration and cell length. Trains of Ca2+ transients and corresponding rhythmic contractions and relaxations (beating) were observed in apoptotic cells. Frequencies of Ca2+ transients and beating gradually increased with time and were accompanied by cellular shrinkage. As the cells shrank, amplitudes of Ca2+ transients declined and diastolic intracellular Ca2+ concentration increased until the transients were lost. Beating and progression of apoptosis were significantly inhibited by antagonists against the L-type Ca2+ channel (nifedipine), ryanodine receptor (ryanodine), inositol 1,4,5-trisphosphate receptor (heparin), sarco(endo)plasmic Ca2+-ATPase (thapsigargin), and Na+/Ca2+ exchanger (KB-R7943). Electron-microscopic examination of beating cardiomyocytes revealed progressive breakdown of Z disks. Immunohistochemical analysis and Western blot confirmed that disappearance of Z disk constituent proteins (α-actinin, desmin, and tropomyosin) preceded degradation of other cytoskeletal proteins. It thus appears that, in adult cardiomyocyte apoptosis, Ca2+ transients mediate apoptotic beating and efficient sarcomere destruction initiated by Z disk breakdown.

2017 ◽  
Vol 312 (4) ◽  
pp. H645-H661 ◽  
Author(s):  
Carlos Enrique Guerrero-Beltrán ◽  
Judith Bernal-Ramírez ◽  
Omar Lozano ◽  
Yuriana Oropeza-Almazán ◽  
Elena Cristina Castillo ◽  
...  

Recent evidence has shown that nanoparticles that have been used to improve or create new functional properties for common products may pose potential risks to human health. Silicon dioxide (SiO2) has emerged as a promising therapy vector for the heart. However, its potential toxicity and mechanisms of damage remain poorly understood. This study provides the first exploration of SiO2-induced toxicity in cultured cardiomyocytes exposed to 7- or 670-nm SiO2 particles. We evaluated the mechanism of cell death in isolated adult cardiomyocytes exposed to 24-h incubation. The SiO2 cell membrane association and internalization were analyzed. SiO2 showed a dose-dependent cytotoxic effect with a half-maximal inhibitory concentration for the 7 nm (99.5 ± 12.4 µg/ml) and 670 nm (>1,500 µg/ml) particles, which indicates size-dependent toxicity. We evaluated cardiomyocyte shortening and intracellular Ca2+ handling, which showed impaired contractility and intracellular Ca2+ transient amplitude during β-adrenergic stimulation in SiO2 treatment. The time to 50% Ca2+ decay increased 39%, and the Ca2+ spark frequency and amplitude decreased by 35 and 21%, respectively, which suggest a reduction in sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Moreover, SiO2 treatment depolarized the mitochondrial membrane potential and decreased ATP production by 55%. Notable glutathione depletion and H2O2 generation were also observed. These data indicate that SiO2 increases oxidative stress, which leads to mitochondrial dysfunction and low energy status; these underlie reduced SERCA activity, shortened Ca2+ release, and reduced cell shortening. This mechanism of SiO2 cardiotoxicity potentially plays an important role in the pathophysiology mechanism of heart failure, arrhythmias, and sudden death. NEW & NOTEWORTHY Silica particles are used as novel nanotechnology-based vehicles for diagnostics and therapeutics for the heart. However, their potential hazardous effects remain unknown. Here, the cardiotoxicity of silica nanoparticles in rat myocytes has been described for the first time, showing an impairment of mitochondrial function that interfered directly with Ca2+ handling.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Guixi Mo ◽  
Xin Liu ◽  
Yiyue Zhong ◽  
Jian Mo ◽  
Zhiyi Li ◽  
...  

AbstractIntracellular ion channel inositol 1,4,5-triphosphate receptor (IP3R1) releases Ca2+ from endoplasmic reticulum. The disturbance of IP3R1 is related to several neurodegenerative diseases. This study investigated the mechanism of IP3R1 in myocardial ischemia/reperfusion (MI/R). After MI/R modeling, IP3R1 expression was silenced in myocardium of MI/R rats to explore its role in the concentration of myocardial enzymes, infarct area, Ca2+ level, NLRP3/Caspase-1, and pyroptosis markers and inflammatory factors. The adult rat cardiomyocytes were isolated and cultured to establish hypoxia/reperfusion (H/R) cell model. The expression of IP3R1 was downregulated or ERP44 was overexpressed in H/R-induced cells. Nifedipine D6 was added to H/R-induced cells to block Ca2+ channel or Nigericin was added to activate NLRP3. IP3R1 was highly expressed in myocardium of MI/R rats, and silencing IP3R1 alleviated MI/R injury, reduced Ca2+ overload, inflammation and pyroptosis in MI/R rats, and H/R-induced cells. The binding of ERP44 to IP3R1 inhibited Ca2+ overload, alleviated cardiomyocyte inflammation, and pyroptosis. The increase of intracellular Ca2+ level caused H/R-induced cardiomyocyte pyroptosis through the NLRP3/Caspase-1 pathway. Activation of NLRP3 pathway reversed the protection of IP3R1 inhibition/ERP44 overexpression/Nifedipine D6 on H/R-induced cells. Overall, ERP44 binding to IP3R1 inhibits Ca2+ overload, thus alleviating pyroptosis and MI/R injury.


2004 ◽  
Vol 382 (2) ◽  
pp. 411-416 ◽  
Author(s):  
Katrina A. BICKNELL ◽  
Carmen H. COXON ◽  
Gavin BROOKS

Repair of the mature mammalian myocardium following injury is impaired by the inability of the majority of cardiomyocytes to undergo cell division. We show that overexpression of the cyclin B1–CDC2 (cell division cycle 2 kinase) complex re-initiates cell division in adult cardiomyocytes. Thus strategies targeting the cyclin B1–CDC2 complex might re-initiate cell division in mature cardiomyocytes in vivo and facilitate myocardial regeneration following injury.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Pásek ◽  
J. Šimurda ◽  
G. Christé

The ratio of densities of Na-Ca exchanger current (INaCa) in the t-tubular and surface membranes (INaCa-ratio) computed from the values ofINaCaand membrane capacitances (Cm) measured in adult rat ventricular cardiomyocytes before and after detubulation ranges between 1.7 and 25 (potentially even 40). Variations of action potential waveform and of calcium turnover within this span of theINaCa-ratio were simulated employing previously developed model of rat ventricular cell incorporating separate description of ion transport systems in the t-tubular and surface membranes. The increase ofINaCa-ratio from 1.7 to 25 caused a prolongation of APD (duration of action potential at 90% repolarisation) by 12, 9, and 6% and an increase of peak intracellular Ca2+transient by 45, 19, and 6% at 0.1, 1, and 5 Hz, respectively. The prolonged APD resulted from the increase ofINaCadue to the exposure of a larger fraction of Na-Ca exchangers to higher Ca2+transients under the t-tubular membrane. The accompanying rise of Ca2+transient was a consequence of a higher Ca2+load in sarcoplasmic reticulum induced by the increased Ca2+cycling between the surface and t-tubular membranes. However, the reason for large differences in theINaCa-ratio assessed from measurements in adult rat cardiomyocytes remains to be explained.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Rong-Huai Zhang ◽  
Haitao Guo ◽  
Machender R. Kandadi ◽  
Xiao-Ming Wang ◽  
Jun Ren

(1) Hyperglycemia leads to cytotoxicity in the heart. Although several theories are postulated for glucose toxicity-induced cardiomyocyte dysfunction, the precise mechanism still remains unclear. (2) This study was designed to evaluate the impact of elevated extracellular Ca2+on glucose toxicity-induced cardiac contractile and intracellular Ca2+anomalies as well as the mechanism(s) involved with a focus on Ca2+/calmodulin (CaM)-dependent kinase. Isolated adult rat cardiomyocytes were maintained in normal (NG, 5.5 mM) or high glucose (HG, 25.5 mM) media for 6-12 hours. Contractile indices were measured including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), and time-to-90% relengthening (TR90). (3) Cardiomyocytes maintained with HG displayed abnormal mechanical function including reduced PS, ±dL/dt, and prolonged TPS, TR90and intracellular Ca2+clearance. Expression of intracellular Ca2+regulatory proteins including SERCA2a, phospholamban and Na+-Ca2+exchanger were unaffected whereas SERCA activity was inhibited by HG. Interestingly, the HG-induced mechanical anomalies were abolished by elevated extracellular Ca2+(from 1.0 to 2.7 mM). Interestingly, the high extracellular Ca2+-induced beneficial effect against HG was abolished by the CaM kinase inhibitor KN93. (4) These data suggest that elevated extracellular Ca2+protects against glucose toxicity-induced cardiomyocyte contractile defects through a mechanism associated with CaM kinase.


2010 ◽  
Vol 298 (2) ◽  
pp. H360-H366 ◽  
Author(s):  
Thane G. Maddaford ◽  
Elena Dibrov ◽  
Cecilia Hurtado ◽  
Grant N. Pierce

The Na+/Ca2+ exchanger (NCX) is proposed to be an important protein in the regulation of Ca2+ movements in the heart. This Ca2+ regulatory action is thought to modulate contractile activity in the heart under normal physiological conditions and may contribute to the Ca2+ overload that occurs during ischemic reperfusion challenge. To evaluate these hypotheses, adult rat cardiomyocytes were exposed to an adenovirus that codes for short hairpin RNA (shRNA) targeting NCX gene expression through RNA interference. An adenovirus transcribing a short RNA with a scrambled nucleotide sequence was compared with the NCX-shRNA nucleotide sequence and used as a control. Freshly isolated rat cardiomyocytes were infected with virus for 48 h before examination. Cardiomyocytes maintained their characteristic morphological appearance during this short time period after isolation. NCX expression was inhibited by up to ∼60% by the shRNA treatment as determined by Western blot analysis. The depletion in NCX protein was accompanied by a significant depression of NCX activity in shRNA-treated cells. Ca2+ homeostasis was unaltered in the shRNA-treated cells upon electrical stimulation compared with control cells. However, when cardiomyocytes were exposed to a simulated ischemic solution, NCX-depleted cells were significantly protected from the rise in cytoplasmic Ca2+ and damage that was detected in control cells during ischemia and reperfusion. Our data support the role for NCX in ischemic injury to the heart and demonstrate the usefulness of altering gene expression with an adenoviral-delivery system of shRNA in adult cardiomyocytes.


2004 ◽  
Vol 286 (3) ◽  
pp. H1124-H1132 ◽  
Author(s):  
Dacia L. Hunton ◽  
LuYun Zou ◽  
Yi Pang ◽  
Richard B. Marchase

Capacitative Ca2+ entry (CCE) refers to the influx of Ca2+ through plasma membrane channels activated on depletion of endoplasmic-sarcoplasmic reticulum Ca2+ stores. We utilized two Ca2+-sensitive dyes (one monitoring cytoplasmic free Ca2+ and the other free Ca2+ within the sarcoplasmic reticulum) to determine whether adult rat ventricular myocytes exhibit CCE. Treatments with inhibitors of the sarcoplasmic endoplasmic reticulum Ca2+-ATPases were not efficient in releasing Ca2+ from stores. However, when these inhibitors were coupled with either Ca2+ ionophores or angiotensin II (an agonist generating inositol 1,4,5 trisphosphate), depletion of stores was observed. This depletion was accompanied by a significant influx of extracellular Ca2+ characteristic of CCE. CCE was also observed when stores were depleted with caffeine. This influx of Ca2+ was sensitive to four inhibitors of CCE (glucosamine, lanthanum, gadolinium, and SKF-96365) but not to inhibitors of L-type channels or the Na+/Ca2+ exchanger. In the whole cell configuration, an inward current of ∼0.7 pA/pF at –90 mV was activated when a Ca2+ chelator or inositol (1,4,5)-trisphosphate was included in the pipette or when Ca2+ stores were depleted with a Ca2+-ATPase inhibitor and ionophore. The current was maximal at hyperpolarizing voltages and inwardly rectified. The channel was relatively permeant to Ca2+ and Ba2+ but only poorly to Mg2+ or Mn2+. Taken together, these data support the existence of CCE in adult cardiomyocytes, a finding with likely implications to physiological responses to phospholipase C-generating agonists.


1987 ◽  
Vol 65 (9) ◽  
pp. 1966-1975 ◽  
Author(s):  
M. Kyozuka ◽  
J. Crankshaw ◽  
I. Berezin ◽  
S. M. Collins ◽  
E. E. Daniel

Smooth muscle cells were isolated from estrogenized rat myometrium by collagenase digestion. Electron microscopic examination and measurement of cell lengths by image-splitting micrometry were carried out after fixation with acrolein. Mean lengths of cells before and after isolation were 81.7 and 66.9 μm, respectively. Responses of cells were compared with contractions of isolated strips recorded isometrically. Effects of carbachol and KCl were examined in 2 mM Ca, 2 mM Ca + 4 mM EGTA, and 2 mM Ca + 10−8 M nitrendipine solution. Carbachol and KCl produced concentration-dependent shortening of isolated cells maximal at 30 s after addition. The concentrations of carbachol required to produce shortenings were about 100-fold less than those required to produce isometric contractions; but no major difference was observed in the concentration dependence of cell shortening and isometric contraction produced by potassium-induced depolarization. In 2 mM Ca solution, there was a phasic response, followed by a tonic response such that more than 50% of maximum cell shortening was maintained for 10 min. However, in 2 mM Ca + 4 mM EGTA or 10−8 M nitrendipine, the tonic contraction was abolished and cells rapidly relaxed after 30 s. If carbachol was added to cells after varying times in the EGTA-containing solution, the ability to initiate a contraction declined exponentially with a half-time of 160 s. Effects of depolarization by KCl were examined in 2 mM Ca plus nitrendipine and 2 mM Ca + 4 mM EGTA solution. Shortening occurred in 2 mM Ca solution by depolarization but not if nitrendipine was added. Though shortening was not observed in 2 mM Ca + 4 mM EGTA solution by KCl, subsequent addition of carbachol induced shortening. These results suggested that there was an intracellular Ca store site from which Ca was released by carbachol and which was not affected by depolarization in the absence of external Ca. No evidence was obtained that the contraction persists in Ca2+-free medium in isolated cells, which is in agreement with previous findings in small muscle strips in which only a similar transient response was obtained.


Sign in / Sign up

Export Citation Format

Share Document