Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases

2016 ◽  
Vol 133 ◽  
pp. 1-12 ◽  
Author(s):  
Letícia B. Smith ◽  
Shinji Kasai ◽  
Jeffrey G. Scott
2020 ◽  
Vol 57 (5) ◽  
pp. 1550-1559 ◽  
Author(s):  
Casey Parker ◽  
Daviela Ramirez ◽  
Carol Thomas ◽  
C Roxanne Connelly

Abstract Resistance to insecticides used to control mosquito vectors threatens the ability of mosquito-control organizations to protect public health. Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) are invasive species widely distributed throughout Florida and have been implicated in recent epidemics of Zika, dengue, and chikungunya viruses. Knowledge of the susceptibility status of these mosquito species to pyrethroid and organophosphate active ingredients (AIs) is needed to inform product selection and treatment decisions. The susceptibility of 37 Ae. aegypti and 42 Ae. albopictus populations from Florida was assessed in response to six pyrethroid and three organophosphate AIs using the CDC bottle bioassay method. Of all bioassays completed with a pyrethroid AI, 95% for Ae. aegypti and 30% for Ae. albopictus resulted in a resistant outcome. For organophosphate AIs, ~31% of assays conducted for both species were classified as resistant. The highest frequency of susceptibility for both species was observed in response to the organophosphate AI, naled. Lambda-cyhalothrin was the only pyrethroid to result in a susceptible status for Ae. aegypti and also had the highest frequency of susceptibility for Ae. albopictus. Resistance was detected to every AI tested for both Ae. aegypti and Ae. albopictus, but there was a pronounced trend of pyrethroid resistance in Florida populations of Ae. aegypti. The results of this work provide evidence for the need to decrease reliance on pyrethroids and to implement different methods of control of Ae. aegypti in Florida.


2021 ◽  
Vol 21 (3) ◽  
pp. 1124-1140
Author(s):  
Mohd Rohaizat Hassan ◽  
Noor Atika Azit ◽  
Suhaiza Mohd Fadzil ◽  
Siti Rasidah Abd Ghani ◽  
Norfazilah Ahmad ◽  
...  

Background: The insecticides used widely has led to resistance in the vector and impose a challenge to vector control op- eration. Objectives: This review aims to analyse the distribution of insecticide resistance of dengue vectors in South East Asia and to describe the mechanism of insecticide resistance. Methods: Literature search for articles published on 2015 to 2019 from PubMed, Scopus and ProQuest was performed. Total of 37 studies included in the final review from the initial 420 studies. Results: Pyrethroid resistance was concentrated on the west coast of Peninsular Malaysia and Northern Thailand and scat- tered at Java Island, Indonesia while organophosphate resistance was seen across the Java Island (Indonesia), West Sumatera and North Peninsular Malaysia. Organochlorine resistance was seen in Sabah, Malaysia and scattered distribution in Nusa Tenggara, Indonesia. V1016G, S989P, F1269C gene mutation in Aedes Aegypti were associated with Pyrethroid resistance in Singapore and Indonesia. In Malaysia, over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) Glutathione S-transferases, carboxylesterases commonly associated with pyrethroids resistance in Aedes Aegypti and CYP612 overexpressed in Aedes Albopictus. The genetic mutation in A302S in Aedes Albopictus was associated with organochlorine resistance in Malaysia. Conclusions: Rotation of insecticide, integration with synergist and routine assessment of resistance profile are recom- mended strategies in insecticide resistance management. Keywords: Insecticide resistance; vector management; Aedes; pyrethroid; mortality.


2018 ◽  
Author(s):  
Alden S. Estep ◽  
Neil D. Sanscrainte ◽  
Christy M. Waits ◽  
Sarah J. Bernard ◽  
Aaron M. Lloyd ◽  
...  

AbstractRecent outbreaks of locally transmitted dengue and Zika viruses in Florida have placed more emphasis on the importance of integrated vector management plans for Aedes aegypti (L.) and Aedes albopictus Skuse. Adulticiding, primarily with pyrethroids, can be the best option available for the immediate control of potentially arbovirus-infected mosquitoes during outbreak situations. While pyrethroid resistance is common in Ae. aegypti worldwide and testing is recommended by CDC and WHO, resistance to this class of products has not been widely examined or quantified in Florida. To address this information gap, we performed the first study to quantify both pyrethroid resistance and genetic markers of pyrethroid resistance in Ae. aegypti and Ae. albopictus strains in Florida. Using direct topical application, we examined 21 Ae. aegypti strains from 9 counties and found permethrin resistance (resistance ratio (RR)=6-61-fold) in all strains when compared to the susceptible ORL1952 control strain. Permethrin resistance in five strains of Ae. albopictus was very low (RR<1.6) even when collected from the same containers producing resistant Ae. aegypti. Characterization of two sodium channel kdr alleles associated with pyrethroid-resistance showed widespread distribution in 62 strains of Ae. aegypti. The 1534 phenylalanine to cysteine (F1534C) single nucleotide polymorphism SNP was fixed or nearly fixed in all strains regardless of RR. We observed much more variation in the 1016 valine to isoleucine (V1016I) allele and observed that increasing frequency of the homozygous V1016I allele correlates strongly with increased RR (Pearson corr= 0.905). In agreement with previous studies, we observed a very low frequency of three kdr genotypes, IIFF, VIFF, and IIFC. In this study, we provide a statewide examination of pyrethroid resistance, and demonstrate that permethrin resistance and the genetic markers for resistance are widely present in FL Ae. aegypti. Resistance testing should be included in an effective management program.Author SummaryAedes aegypti and Aedes albopictus can vector a variety of arboviruses that cause diseases and are thus a public health concern. Pyrethroid insecticide resistance is common in Aedes aegypti in many locations worldwide and can adversely affect vector control operations. However, the resistance status of these vectors in Florida is largely unreported and recent local transmission of dengue and Zika viruses has made this information critical for effective control operations. In this study, we showed that permethrin resistance and two common SNPs of the voltage gated sodium channel (V1016I and F1534C) previously associated with pyrethroid resistance were widely present in Florida Aedes aegypti strains. We also observed a strong correlation between the IICC genotype and RR as determined by topical application, which suggests, as have others, that kdr frequency may be a useful indicator of resistance in Aedes aegypti.


2018 ◽  
Vol 39 (2) ◽  
pp. 67
Author(s):  
Allison Imrie

Dengue is a mosquito-borne acute viral infection that can develop into a potentially lethal complication known as severe dengue. It is endemic in more than 100 tropical and subtropical countries where the mosquito vectors, predominantly Aedes aegypti and Aedes albopictus, are found. Non-immune travellers are at risk of infection and with the rise in international travel and the availability of cheap holiday packages to endemic countries, many of which are popular tourist destinations, there has been a significant increase in spread of dengue viruses.


2012 ◽  
Vol 5 (1) ◽  
pp. 56 ◽  
Author(s):  
Fara NANTENAINA Raharimalala ◽  
Lala HARIVELO Ravaomanarivo ◽  
Pierre Ravelonandro ◽  
Lala SAHONDRA Rafarasoa ◽  
Karima Zouache ◽  
...  

2021 ◽  
Author(s):  
Roenick P. Olmo ◽  
Yaovi Mathias H. Todjro ◽  
Eric R. G. R. Aguiar ◽  
Joao Paulo P. de Almeida ◽  
Juliana N. Armache ◽  
...  

Aedes aegypti and Aedes albopictus are major mosquito vectors for arthropod-borne viruses (arboviruses) such as dengue (DENV) and Zika (ZIKV) viruses. Mosquitoes also carry insect-specific viruses (ISVs) that may affect the transmission of arboviruses. Here, we analyzed the global virome in urban Aedes mosquitoes and observed that two insect-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most prevalent in A. aegypti worldwide except for African cities, where transmission of arboviruses is low. Spatiotemporal analysis revealed that presence of HTV and PCLV led to a 200% increase in the chances of having DENV in wild mosquitoes. In the laboratory, we showed that HTV and PCLV prevented downregulation of histone H4, a previously unrecognized proviral host factor, and rendered mosquitoes more susceptible to DENV and ZIKV. Altogether, our data reveals a molecular basis for the regulation of A. aegypti vector competence by highly prevalent ISVs that may impact how we analyze the risk of arbovirus outbreaks.


Sign in / Sign up

Export Citation Format

Share Document