Estimation of in-situ petrophysical properties from wireline formation tester and induction logging measurements: A joint inversion approach

2008 ◽  
Vol 63 (1-4) ◽  
pp. 1-17 ◽  
Author(s):  
Faruk O. Alpak ◽  
Carlos Torres-Verdín ◽  
Tarek M. Habashy
Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. D75-D82
Author(s):  
Alireza Shahin ◽  
Mike Myers ◽  
Lori Hathon

Joint modeling and inversion of frequency-dependent dielectric constant and electrical resistivity well-log measurements has been addressed in literature in recent years. However, this problem is not studied for dual-porosity carbonate formations. Besides, the salinity and matrix dielectric constant are presumed to be known in previous studies. We have combined a model for brine dielectric constant and two laboratory-supported models for the electrical resistivity and dielectric constant of dual-porosity carbonates. Using this methodology, we replicate electrical resistivity and dielectric well-log measurements. Using a stochastic global optimization algorithm, we formulate a joint inversion workflow to estimate petrophysical properties of interest. For a constructed dual-porosity carbonate reservoir, we determine that the inversion workflow matches the forward-modeled data for the oil column, water column, and transition zone. We also found that our inversion workflow is capable to retrieve local model parameters (water-filled intergranular porosity and water-filled vuggy porosity) and global model parameters (matrix dielectric constant, lithology exponents for intergranular and vuggy pores, and salinity) with reasonable accuracy.


Author(s):  
Sudad Hameed AL-OBAIDI ◽  
Victoria SMIRNOV ◽  
Hiba Hussein ALWAN

Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions is of great importance both for the calculation of reserves and for the interpretation of well logging data. In addition, it is also important for the preparation of hydrocarbon field development projects. The study of the processes of changes in the petrophysical properties of the reservoir under controlled conditions allows not only to determine their reliability but also to evaluate the dynamics of these changes depending on the temperature and pressure conditions of the reservoir and the water saturation of the rocks. In this work, an evaluation of the dependence of the physical properties of hydrocarbon reservoirs on their water saturation (Sw) was carried out. Residual water saturation (Swr) was created in the rocks and the properties of these rocks were compared at the states of partial (25 %) and complete water saturation (100 %). The changes in petrophysical parameters of partially water saturated rocks during the increase in effective pressure were studied and estimates of these changes were obtained. The results showed that when the effective pressure is increased, the Swr increases by an average of 6 % compared to atmospheric conditions. This is accompanied by an increase in the velocity of longitudinal (by 51.9 % on average) and lateral waves (by 37.1 % on average). As residual water saturation increases, effective permeability decreases for both standard and reservoir conditions, with, gas permeability decreasing for both dry samples (by 23 % on average) and samples with residual water saturation (effective permeability decreases by 27 % on average). HIGHLIGHTS Changes in physical properties of hydrocarbon reservoirs by determining physical properties (permeability, porosity, elastic, electrical, deformation strength) under the standard conditions and in physical modelling of reservoir conditions and processes Assessment of the effectiveness of water saturation on the physical properties of the reservoir Comparisons between the petrophysical properties of reservoir core samples in which the pore space is fully saturated with the reservoir fluid model and samples with residual water saturation Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions Estimation of the changes in petrophysical parameters of partial water-saturated rocks during the increase in effective formation pressure GRAPHICAL ABSTRACT


2011 ◽  
Vol 29 ◽  
pp. 105-138 ◽  
Author(s):  
Faruk Omer Alpak ◽  
Tarek M. Habashy ◽  
Aria Abubakar ◽  
Carlos Torres-Verdin ◽  
Kamy Sepehrnoori

2018 ◽  
Vol 18 (15) ◽  
pp. 11097-11124 ◽  
Author(s):  
James S. Wang ◽  
S. Randolph Kawa ◽  
G. James Collatz ◽  
Motoki Sasakawa ◽  
Luciana V. Gatti ◽  
...  

Abstract. The precise contribution of the two major sinks for anthropogenic CO2 emissions, terrestrial vegetation and the ocean, and their location and year-to-year variability are not well understood. Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 are expected to benefit from the increasing measurement density brought by recent in situ and remote CO2 observations. We uniquely apply a batch Bayesian synthesis inversion at relatively high resolution to in situ surface observations and bias-corrected GOSAT satellite column CO2 retrievals to deduce the global distributions of natural CO2 fluxes during 2009–2010. The GOSAT inversion is generally better constrained than the in situ inversion, with smaller posterior regional flux uncertainties and correlations, because of greater spatial coverage, except over North America and northern and southern high-latitude oceans. Complementarity of the in situ and GOSAT data enhances uncertainty reductions in a joint inversion; however, remaining coverage gaps, including those associated with spatial and temporal sampling biases in the passive satellite measurements, still limit the ability to accurately resolve fluxes down to the sub-continental or sub-ocean basin scale. The GOSAT inversion produces a shift in the global CO2 sink from the tropics to the north and south relative to the prior, and an increased source in the tropics of ∼ 2 Pg C yr−1 relative to the in situ inversion, similar to what is seen in studies using other inversion approaches. This result may be driven by sampling and residual retrieval biases in the GOSAT data, as suggested by significant discrepancies between posterior CO2 distributions and surface in situ and HIPPO mission aircraft data. While the shift in the global sink appears to be a robust feature of the inversions, the partitioning of the sink between land and ocean in the inversions using either in situ or GOSAT data is found to be sensitive to prior uncertainties because of negative correlations in the flux errors. The GOSAT inversion indicates significantly less CO2 uptake in the summer of 2010 than in 2009 across northern regions, consistent with the impact of observed severe heat waves and drought. However, observations from an in situ network in Siberia imply that the GOSAT inversion exaggerates the 2010–2009 difference in uptake in that region, while the prior CASA-GFED model of net ecosystem production and fire emissions reasonably estimates that quantity. The prior, in situ posterior, and GOSAT posterior all indicate greater uptake over North America in spring to early summer of 2010 than in 2009, consistent with wetter conditions. The GOSAT inversion does not show the expected impact on fluxes of a 2010 drought in the Amazon; evaluation of posterior mole fractions against local aircraft profiles suggests that time-varying GOSAT coverage can bias the estimation of interannual flux variability in this region.


2017 ◽  
Author(s):  
Siti Najmi Farhan Zulkipli ◽  
Michael Mehmet Altunbay ◽  
Gamal Ragab Gaafar ◽  
Jamari M. Shah

2017 ◽  
Author(s):  
Anisa Agustina ◽  
David P. Sahara ◽  
Andri Dian Nugraha

2020 ◽  
Author(s):  
Xiao Lu ◽  
Daniel J. Jacob ◽  
Yuzhong Zhang ◽  
Joannes D. Maasakkers ◽  
Melissa P. Sulprizio ◽  
...  

Abstract. We use satellite (GOSAT) and in situ (GLOBALVIEWplus CH4 ObsPack) observations of atmospheric methane in a joint global inversion of methane sources, sinks, and trends for the 2010–2017 period. The inversion is done by analytical solution to the Bayesian optimization problem, yielding closed-form estimates of information content to assess the consistency and complementarity (or redundancy) of the satellite and in situ datasets. We find that GOSAT and in situ observations are to a large extent complementary, with GOSAT providing a stronger overall constraint on the global methane distributions, but in situ observations being more important for northern mid-latitudes and for relaxing global error correlations between methane emissions and the main methane sink (oxidation by OH radicals). The GOSAT observations achieve 212 independent pieces of information (DOFS) for quantifying mean 2010–2017 anthropogenic emissions on 1009 global model grid elements, and a DOFS of 122 for 2010–2017 emission trends. Adding the in situ data increases the DOFS by about 20–30 %, to 262 and 161 respectively for mean emissions and trends. Our joint inversion finds that oil/gas emissions in the US and Canada are underestimated relative to the values reported by these countries to the United Nations Framework Convention on Climate Change (UNFCCC) and used here as prior estimates, while coal emissions in China are overestimated. Wetland emissions in North America are much lower than in the mean WetCHARTs inventory used as prior estimate. Oil/gas emissions in the US increase over the 2010–2017 period but decrease in Canada and Europe. Our joint GOSAT+in situ inversion yields a global methane emission of 551 Tg a−1 averaged over 2010–2017 and a methane lifetime of 11.2 years against oxidation by tropospheric OH (86 % of the methane sink).


2020 ◽  
Vol 224 (2) ◽  
pp. 1464-1475
Author(s):  
Laure Duboeuf ◽  
Louis De Barros ◽  
Maria Kakurina ◽  
Yves Guglielmi ◽  
Frederic Cappa ◽  
...  

SUMMARY Fluid injections can trigger seismicity even on faults that are not optimally oriented for reactivation, suggesting either sufficiently large fluid pressure or local stress perturbations. Understanding how stress field may be perturbed during fluid injections is crucial in assessing the risk of induced seismicity and the efficiency of deep fluid stimulation projects. Here, we focus on a series of in situ decametric experiments of fluid-induced seismicity, performed at 280 m depth in an underground gallery, while synchronously monitoring the fluid pressure and the activated fractures movements. During the injections, seismicity occurred on existing natural fractures and bedding planes that are misoriented to slip relative to the background stress state, which was determined from the joint inversion of downhole fluid pressure and mechanical displacements measured at the injection. We then compare this background stress with the one estimated from the inversion of earthquake focal mechanisms. We find significant differences in the orientation of the stress tensor components, thus highlighting local perturbations. After discussing the influence of the gallery, the pore pressure variation and the geology, we show that the significant stress perturbations induced by the aseismic deformation (which represents more than 96 per cent of the total deformation) trigger the seismic reactivation of fractures with different orientations.


Sign in / Sign up

Export Citation Format

Share Document