Geomechanics of thermal viscous oil production in sandstones

2013 ◽  
Vol 103 ◽  
pp. 121-139 ◽  
Author(s):  
Ali Shafiei ◽  
Maurice B. Dusseault
Keyword(s):  
Author(s):  
Fernancelys Rodriguez M.

Abstract Venezuela has been ranked as a potential oil producer country thanks to its huge reserves of conventional and unconventional oils. Conventional reservoirs with complex fluid systems, located in the North of Monagas state, where it is possible to observe thick fluid columns with significant compositional gradients (showing changes from gas condensate to non-mobile oil-Tar mat). In these types of reservoirs EOR methods such as miscible gas flooding have been successfully applied to compensate pressure decline and avoid asphaltene deposition issues. Production of unconventional oils, the largest highly-viscous oil reservoir of La Faja Petrolifera del Orinoco (La FPO), demands great challenges. Discovered in the 1930’s, the first rigorous evaluations of this reservoir started in the 1980s [1]; those huge deposits of highly viscous oils were considered technically and economically unattractive at that time. Due to production decline of conventional oil reservoirs, efforts are being done by the Venezuelan National Oil Company and collaborators to develop EOR projects to achieve increasing oil production in unconventional (heavy and extra-heavy) reservoirs, being the most promising options thermal and chemical EOR methods. Some authors agree that in the FPO, only 40–65% (depending on the site) of the oil-bearing formations is suitable for thermal EOR methods. Recent works have been showing the potential of chemical EOR for extra-heavy oils in La FPO [2, 3, 4, 5, 6, 7, 8, 9], mostly for mobility control and mobilization of residual oil. This work presents a literature review of the EOR projects in Venezuela for conventional and highly viscous oils, based on both lab and field experiences, and the perspectives for applications to increase Venezuelan oil production.


2020 ◽  
Vol 18 (1) ◽  
pp. 120
Author(s):  
K.R. Urazakov ◽  
R.Z. Nurgaliev ◽  
G.I. Bikbulatova ◽  
S.L. Sabanov ◽  
Yu.A. Boltneva

2016 ◽  
pp. 114-119
Author(s):  
I. V. Chizhov

The article is devoted to the problem of increasing the efficiency of high viscosity oil recovery from low permeable beds.


2021 ◽  
Author(s):  
Stanislav Ursegov ◽  
Evgenii Taraskin ◽  
Armen Zakharian

Abstract Globally, steam injection for heavy and high-viscous oil recovery is increasing, including carbonate reservoirs. Lack of full understanding such reservoir heating and limited information about production and injection rates of individual wells require to forecast steam injection not only deterministic and simple liquid displacement characteristic modeling types, but also the data-driven one, which covers the adaptive modeling. The implementation and validation of the adaptive system is presented in this paper by one of the world's largest carbonate reservoirs with heavy and high-viscous oil of the Usinsk field. Steam injection forecasting in such reservoirs is complicated by the unstable well interactions and relatively low additional oil production. In the adaptive geological model, vertical dimensions of cells are similar to gross thicknesses of stratigraphic layers. Geological parameters of cells with drilled wells do not necessarily match actual parameters of those wells since the cells include information of neighboring wells. During the adaptive hydrodynamic modeling, a reservoir pressure is reproduced by cumulative production and injection allocation among the 3D grid cells. Steam injection forecasting is firstly based on the liquid displacement characteristics, which are later modified considering well interactions. To estimate actual oil production of steamflooding using the reservoir adaptive geological and hydrodynamic models, dimensionless interaction coefficients of injection and production wells were first calculated. Then, fuzzy logic functions were created to evaluate the base oil production of reacting wells. For most of those wells, actual oil production was 25 – 30 % higher than the base case. Oil production of steamflooding for the next three-year period was carried out by modeling two options of the reservoir further development - with and without steam injection. Generally, forecasted oil production of the option with steam injection was about 5 % higher. The forecasting effectiveness of cyclic steam stimulations of production wells was done using the cross-section method, when the test sample was divided into two groups - the best and the worst, for which the average forecasted oil rates after the stimulations were respectively higher or lower than the average actual oil rate after the stimulations for the entire sample. The difference between the average actual oil rates after the stimulations of the best and the worst groups was 32 %, i.e. this is in how much the actual oil production could have increased if only the best group of the sample had been treated.


2018 ◽  
Vol 08 (09) ◽  
pp. 859-873
Author(s):  
Zhicheng Yang ◽  
Yunpeng Li ◽  
Zongbin Liu ◽  
Gaige Wang ◽  
Qi Cheng

2015 ◽  
pp. 67-73 ◽  
Author(s):  
O. V. Smirnov ◽  
A. E. Kozyaruk ◽  
K. V. Kuskov ◽  
A. L. Portnyagin ◽  
A. V. Saphonov

The paper considers the issues of oil production enhancement through applying methods of well stimulation including the wells producing viscous oil, in particular various methods of electrotreatment.


SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 153-163 ◽  
Author(s):  
Jean Cristofari ◽  
Louis M. Castanier ◽  
Anthony R. Kovscek

Summary Application of cyclic solvent injection into heavy and viscous crude oil followed by in-situ combustion of heavy residues is explored from a laboratory perspective. The solvent reduces oil viscosity in-situ and extracts the lighter crude-oil fractions. Combustion cleans the near-well region and stimulates thermally the oil production. Both solvent injection and in-situ combustion are technically effective. The combination of the two methods, however, has never been tried to our knowledge. Hamaca (Venezuela) and West Sak (Alaska) crude oils were employed. First, ramped temperature oxidation studies were conducted to measure the kinetic properties of the oil prior to and following solvent injection. Pentane, decane, and kerosene were the solvents of interest. Second, solvent was injected in a cyclic fashion into a 1-m-long combustion tube. Then, the tube was combusted. Hamaca oil presented good burning properties, especially following pentane injection. The pentane extracted lighter components of the crude and deposited preferentially effective fuel for combustion. On the other hand, West Sak oil did not exhibit stable combustion properties without solvent injection, following solvent injection, and even when metallic additives were added to enhance the combustion. We were unable to propagate a burning front within the combustion tube. Nevertheless, the experimental results do show that this combined solvent combustion method is applicable to the broad range of oil reservoirs with properties similar to Hamaca. Introduction This article investigates the effect of solvent injection on the subsequent performance of in-situ combustion. The work is based on experimental results obtained by a combination of these two successful in-situ upgrading processes for viscous oils. It is envisioned that application in the field occurs first by a cycle of solvent injection, a short soak period, and subsequent oil production using the same well (Castanier and Kovscek 2005). By mixing with oil, the solvent decreases the oil viscosity and upgrades the crude by extracting in-situ the lighter ends of the crude oil. The heavy ends, that are markedly less interesting, are left behind. Injection of solvent and oil production occurs for a number of cycles until the economic limit is reached or until the deposition of crude oil heavy ends damages production. The solvent injection phase is followed by in-situ combustion that burns the heavy ends left from the solvent injection. By switching from air to nitrogen injection, the combustion is extinguished. Again, oil is produced by the same well used for injection in a cyclic fashion. Combustion enhances the production by decreasing thermally the oil viscosity and adding energy to the reservoir through the formation of combustion gases. The combustion also upgrades the oil through thermal cracking (Castanier and Brigham 2003). For our experiments, two oils of particular interest were used. The first experiments employed crude oil from Hamaca (Venezuela), where the field location requires important costs of transporting crude to upgrading facilities. The second set of experiments was conducted with viscous West Sak oil (Alaska), where steam injection currently appears to be unsuitable because of heat losses to permafrost. While the presence of oil in the Orinoco heavy-oil belt, in Central Venezuela, was discovered in the 1930s, the first rigorous evaluation of the resources was made in the 1980s, and the region was divided into four areas: Machete, Zuata, Hamaca, and Cerro Negro. It contains between 1.2 and 1.8 trillion recoverable barrels (Kuhlman 2000) of heavy and extra-heavy oil. The 9-11° API density crude is processed at the Jose refinery complex on the northern coast of Venezuela. The cost of transporting heavy oils to the northern coast provides an incentive to investigate in-situ upgrading. In 2003, the total production from these projects was about 500,000 B/D of synthetic crude oil. This figure was expected to increase to 600,000 B/D by 2005 (Acharya et al. 2004). West Sak is a viscous oil reservoir located within the Kuparuk River Unit on the North Slope of Alaska. It is part of a larger viscous oil belt that includes Prudhoe Bay. The estimated total oil in place ranges from 7 to 9 billion barrels, with an oil gravity ranging from 10 to 22°API. The reservoir depth ranges from 2,500 to 4,500 feet, with gross thickness of 500 feet and an average net thickness of 90 feet. The temperature is between 45 and 100°F, and there is a 2,000-ft (600-m) -thick Permafrost layer. In March 2005, 16,000 BOPD were produced and 40,000 BOPD are planned for 2007 (Targac et al. 2005). Within the scope of this study, West Sak is of particular interest because there are technical difficulties with steam injection that include (Gondouin and Fox 1991):Surface-generated steam passing through a thick permafrost layer; the well would sink if the permafrost melted.The reservoirs consist of thin, medium-permeability layers.The formation may contain swelling clays that reduce the rock permeability when exposed to steam condensate. Solvent injection and in-situ combustion are effective in a variety of fields. Both techniques upgrade the oil directly in the reservoir, thereby making heavy resources easier to exploit. The combination of these two processes is applicable at large scale to recover viscous oil, or in-situ combustion could be applied on an ad hoc basis to clean the wellbore region, increase the permeability, and thus act as a stimulation process.


Sign in / Sign up

Export Citation Format

Share Document