SUBSTANTIATION OF THE EFFICIENCY OF USING CARBON DIOXIDE IN THE SUPERCRITICAL STATE FOR HIGH-VISCOUS OIL PRODUCTION BY THE THERMODYNAMIC MODELING DATA

2020 ◽  
pp. 10-16
Author(s):  
E.V. Alekina ◽  
◽  
V.A. Olkhovskaya ◽  
K.A. Ovchinnikov ◽  
◽  
...  
2006 ◽  
Vol 12 (3) ◽  
pp. 152-158 ◽  
Author(s):  
Anatolii Galushko ◽  
Helena Sovová ◽  
Roumiana Stateva

The paper reports new experimental data and the results of the thermodynamic modeling of menthol solubility in pressurized CO2. The solubility was measured using the dynamic method and modeled with the Soave-Redlich-Kwong equation of state in the temperature range 30-60?C and pressure range 66-144 bar. The results obtained were compared with the solubility data published by Maier and Stephan and by Sovov? and Jez. The agreement with Maier and Stephan was very good: The deviation of the solubilities, published by Sovov? and Jez, from the other data sources was explained and revised accordingly. The paper also presents for the first time experimental and modeling data for the melting point depression of menthol in the presence of carbon dioxide in the pressure range of interest up to 60 bars. The experimental data was obtained comparing the appearance of menthol particles before and after their exposure to pressurized carbon dioxide.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Lei Li ◽  
Zheng Chen ◽  
Yu-Liang Su ◽  
Li-Yao Fan ◽  
Mei-Rong Tang ◽  
...  

Summary Fracturing is the necessary means of tight oil development, and the most common fracturing fluid is slickwater. However, the Loess Plateau of the Ordos Basin in China is seriously short of water resources. Therefore, the tight oil development in this area by hydraulic fracturing is extremely costly and environmentally unfriendly. In this paper, a new method using supercritical carbon dioxide (CO2) (ScCO2) as the prefracturing energized fluid is applied in hydraulic fracturing. This method can give full play to the dual advantages of ScCO2 characteristics and mixed-water fracturing technology while saving water resources at the same time. On the other hand, this method can reduce reservoir damage, change rock microstructure, and significantly increase oil production, which is a development method with broad application potential. In this work, the main mechanism, the system-energy enhancement, and flowback efficiency of ScCO2 as the prefracturing energized fluid were investigated. First, the microscopic mechanism of ScCO2 was studied, and the effects of ScCO2 on pores and rock minerals were analyzed by nuclear-magnetic-resonance (NMR) test, X-ray-diffraction (XRD) analysis, and scanning-electron-microscope (SEM) experiments. Second, the high-pressurechamber-reaction experiment was conducted to study the interaction mechanism between ScCO2 and live oil under formation conditions, and quantitively describe the change of high-pressure physical properties of live oil after ScCO2 injection. Then, the numerical-simulation method was applied to analyze the distribution and existence state of ScCO2, as well as the changes of live-oil density, viscosity, and composition in different stages during the full-cycle fracturing process. Finally, four injection modes of ScCO2-injection core-laboratory experiments were designed to compare the performance of ScCO2 and slickwater in terms of energy enhancement and flowback efficiency, then optimize the optimal CO2-injection mode and the optimal injection amount of CO2slug. The results show that ScCO2 can dissolve calcite and clay minerals (illite and chlorite) to generate pores with sizes in the range of 0.1 to 10 µm, which is the main reason for the porosity and permeability increases. Besides, the generated secondary clay minerals and dispersion of previously cemented rock particles will block the pores. ScCO2 injection increases the saturation pressure, expansion coefficient, volume coefficient, density, and compressibility of crude oil, which are the main mechanisms of energy increase and oil-production enhancement. After analyzing the four different injection-mode tests, the optimal one is to first inject CO2 and then inject slickwater. The CO2 slug has the optimal value, which is 0.5 pore volume (PV) in this paper. In this paper, the main mechanisms of using ScCO2 as the prefracturing energized fluid are illuminated. Experimental studies have proved the pressure increase, production enhancement, and flowback potential of CO2 prefracturing. The application of this method is of great significance to the protection of water resources and the improvement of the fracturing effect.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012101
Author(s):  
I G Donskoy

Abstract One of the main problems in the use of solid fuels is inevitable formation of significant amounts of carbon dioxide. The prospects for reducing CO2 emissions (carbon capture and storage, CCS) are opening up with the use of new coal technologies, such as thermal power plants with integrated gasification (IGCC) and transition to oxygen-enriched combustion (oxyfuel). In order to study the efficiency of solid fuel conversion processes using carbon dioxide, thermodynamic modeling was carried out. Results show that difference between efficiency of fuel conversion in O2/N2 and O2/CO2 mixtures increases with an increase in the volatile content and a decrease in the carbon content. The effect of using CO2 as a gasification agent depends on the oxygen concentration: at low oxygen concentrations, the process temperature turns out to be low due to dilution; at high oxygen concentrations, the CO2 concentration is not high enough for efficient carbon conversion.


Sign in / Sign up

Export Citation Format

Share Document