scholarly journals Sealing effects of marginal gas injection on oil shale in situ pyrolysis exploitation

2020 ◽  
Vol 189 ◽  
pp. 106968 ◽  
Author(s):  
Zhao Liu ◽  
Youhong Sun ◽  
Wei Guo ◽  
Qiang Li
Keyword(s):  
1968 ◽  
Vol 8 (03) ◽  
pp. 231-240 ◽  
Author(s):  
Allen L. Barnes ◽  
Allen M. Rowe

Abstract A heat transfer study was made of hot gas injection into oil shale through wells interconnected by vertical fractures. This analysis involved the simultaneous numerical solution of a nonlinear, second-order partial differential equation that describes two-dimensional conduction heat transfer in oil shale and a non linear first-order partial differential equation that describes convection heat transfer in the fractures. Three nonlinear, temperature-dependent coefficients were used in this work; they are thermal conductivity, thermal capacity and retorting endothermic heat losses of oil shale. Vertical fractures were considered to be of finite height. Although vertical conduction heat transfer was not considered, an estimate of the error resulting from this limitation was made. How retorting efficiency was affected by injected gas temperature, injection rate, system geometry, cyclic injection and time were investigated. Results from this study show that the rate of retorting oil shale is a direct function of both injection temperature and rate, and the theoretical producing air-oil ratio:(AOR) is an inverse function of temperature. Retorting rates are constant until "breakthrough" of the 700 F isotherm at the producing. well, assuming constant injection parameters. Retorting rates for bounded systems are higher than the analogous unbounded systems and likewise AOR's are less. The use of an alternating injection-soak routine with high injection rates is less efficient than continuous injection at lower rates. These results indicate that injection temperatures on the order of 2000 F or greater may give theoretical AOR's in the economic range. Introduction Over half of the known oil shale reserves are located in the U.S., and most of them lie in the Piceance Creek basin of Western Colorado. The Colorado oil shale outcrops on the edges of the Piceance Greek Basin. At the outcrops the shale beds are relatively thin, from 25 to 50 ft thick. In the center of the basin the oil shale is as great as 2,000 ft thick and is covered with 1,000 ft of overburden. It has been estimated that there are over 1,000 billion bbl of oil in shales having an oil content over 15 gal/ton in this basin. Oil shale does not contain free oil but an organic matter called kerogen. Kerogen yields petroleum hydrocarbons by destructive distillation. It must be heated to approximately 700 F, at which temperature it decomposes into shale oil, gases and coke. The U.S. Bureau of Mines and, more recently, oil companies have conducted considerable research on surface retorting methods to economically recover oil from this shale. Another approach to exploit the oil shale deposits, in particular that portion having 1,000 ft of overburden, is to retort the oil shale in place and produce the liquid and gaseous hydrocarbons through wells drilled into the shale. Some research has been done on this approach. There are several variations to the in situ retorting approach. These variations fall into one of two groups, depending upon the geometry of the system:retorting in a highly fractured or broken up matrix;retorting from single fractures between production and injection wells. The latter is the group studied. Several investigators, using various assumptions, have studied flow of heat through horizontal systems. The objective of this work was to make a heat transfer study of in situ retorting oil shale by hot gas injection through wells interconnected by single vertical fractures of finite height. The oil shale thermal conductivity, thermal capacity and retorting endothermic heat losses were considered to be functions of temperature. SPEJ P. 231ˆ


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huan Zheng ◽  
Weiping Shi ◽  
Dali Ding ◽  
Chuangye Zhang

This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


2021 ◽  
Vol 155 ◽  
pp. 105050
Author(s):  
Young-Kwon Park ◽  
Muhammad Zain Siddiqui ◽  
Selhan Karagöz ◽  
Tae Uk Han ◽  
Atsushi Watanabe ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


Oil Shale ◽  
2018 ◽  
Vol 35 (3) ◽  
pp. 230 ◽  
Author(s):  
L WANG ◽  
D YANG ◽  
J ZHAO ◽  
Y ZHAO ◽  
Z KANG
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document