The breakthrough pressure and sealing property of Lower Paleozoic carbonate rocks in the Gucheng area of the Tarim Basin

Author(s):  
Xiaoxiao Zhou ◽  
Xiuxiang Lü ◽  
Fenggui Sui ◽  
Xuejun Wang ◽  
Yuzhi Li
2019 ◽  
Vol 46 (6) ◽  
pp. 1165-1181 ◽  
Author(s):  
Yinghui CAO ◽  
Shan WANG ◽  
Yajin ZHANG ◽  
Min YANG ◽  
Lei YAN ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 635
Author(s):  
Shihu Zhao ◽  
Yanbin Wang ◽  
Yong Li ◽  
Honghui Li ◽  
Zhaohui Xu ◽  
...  

Tarim Basin is the largest Petroliferous basin in China, while its shale gas development potential has not been fully revealed. The organic-rich black shale in middle Ordovician Heituao Formation from Tadong low uplift of Tarim Basin has been considered as an important source rock and has the characteristic of large thickness, high organic matter content and high thermal maturity degree. To obtain its development potential, geochemical, mineralogical and mechanics research is conducted based on Rock-Eval pyrolysis, total organic carbon (TOC), X-ray diffraction (XRD) and uniaxial compression experiments. The results show that: (1) the TOC content ranges between 0.63 and 2.51 wt% with an average value of 1.22 wt%, the Tmax values are 382–523 °C (average = 468.9 °C), and the S2 value is relatively low which ranges from 0.08 to 1.37 mg HC/g rock (averaging of 0.42 mg HC/g rock); (2) the organic matter of Heituao shale in Tadong low uplift show poor abundance as indicated by low S2 value, gas-prone property, and post mature stage (stage of dry gas). (3) Quartz is the main mineral component in Heituao shale samples, accounting for 26–94 wt% with an average of 72 wt%. Additionally, its Young’s modulus ranges from 20.0 to 23.1 GPa with an average of 21.2 GPa, Poisson’s ratio ranges between 0.11 and 0.21 (average = 0.15); (4) the fracability parameter of brittleness index (BI) ranges between 0.28 and 0.99 (averaging of 0.85), indicating good fracability potential of Heituao shale of Tadong low uplift and has the potential for shale gas development. This study reveals the shale gas accumulation potential in middle Ordovician of the Tarim Basin, and beneficial for future exploration and production practice.


2014 ◽  
Vol 11 (1) ◽  
pp. 67-80 ◽  
Author(s):  
Yanping Zhang ◽  
Xiuxiang Lü ◽  
Haijun Yang ◽  
Jianfa Han ◽  
Xiaodong Lan ◽  
...  

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Wenwen Wei ◽  
Daizhao Chen ◽  
Hairuo Qing ◽  
Yixiong Qian

The burial dissolution of carbonate rocks has long been an interesting topic of reservoir geologists. Integrated with geological studies and reactive transport modeling, this study investigated the Cambrian dolomites that were buried at depths up to 8408 m and still preserved a large amount of unfilled dissolution vugs from the borehole TS1 in the northern Tarim Basin. Studies indicate that these vugs were formed in association with fault-channeled hydrothermal fluids from greater depth through “retrograde dissolution” as the fluid temperature dropped during upward migration. The reactive transport modeling results suggest an important control of the vertical permeability of wall-rock on fluid and temperature patterns which, in turn, would control the spatial distribution of dissolving-originated porosity. The hydrothermal dissolution mainly occurred in dolomite wall-rocks with higher vertical permeability (extensive development of tensional fractures and connected pore spaces), producing additional dissolved porosity there during deep burial. This study implicates the importance of multidisciplinary approaches for understanding the burial/hydrothermal dissolution of dolomite rocks and predicting favourable deep/ultradeep carbonate reservoirs.


Sign in / Sign up

Export Citation Format

Share Document