scholarly journals Effects of methane hydrates on two-phase relative permeability in sandstone: Numerical simulation of laboratory experiments

Author(s):  
Alejandro Bello-Palacios ◽  
Per Fotland ◽  
Stian Almenningen ◽  
Geir Ersland
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4731
Author(s):  
Congcong Li ◽  
Shuoliang Wang ◽  
Qing You ◽  
Chunlei Yu

In this paper, we used a self-developed anisotropic cubic core holder to test anisotropic relative permeability by the unsteady-states method, and introduced the anisotropic relative permeability to the traditional numerical simulator. The oil–water two-phase governing equation considering the anisotropic relative permeability is established, and the difference discretization is carried out. We formed a new oil–water two-phase numerical simulation method. It is clear that in a heterogeneous rock with millimeter to centimeter scale laminae, relative permeability is an anisotropic tensor. When the displacement direction is parallel to the bedding, the residual oil saturation is high and the displacement efficiency is low. The greater the angle between the displacement direction and the bedding strike, the lower the residual oil saturation is, the higher the displacement efficiency is, and the relative permeability curve tends towards a rightward shift. The new simulator showed that the anisotropic relative permeability not only affects the breakthrough time and sweep range of water flooding, but also has a significant influence on the overall water cut. The new simulator is validated with the actual oilfield model. It could describe the law of oil–water seepage in an anisotropic reservoir, depict the law of remaining oil distribution of a typical fluvial reservoir, and provide technical support for reasonable injection-production directions.


1970 ◽  
Vol 10 (04) ◽  
pp. 381-392 ◽  
Author(s):  
John D. Huppler

Abstract Numerical simulation techniques were used to investigate the effects of common core heterogeneities upon apparent waterflood relative-permeability results. Effects of parallel and series stratification, distributed high and low permeability lenses, and vugs were considered. permeability lenses, and vugs were considered. Well distributed heterogeneities have little effect on waterflood results, but as the heterogeneities become channel-like, their influence on flooding behavior becomes pronounced. Waterflooding tests at different injection rates are suggested as the best means of assessing whether heterogeneities are important. Techniques for testing stratified or lensed cores are recommended. Introduction Since best results from waterflood tests performed on core plugs are obtained with homogeneous cores, plugs selected for testing are chosen for their plugs selected for testing are chosen for their apparent uniformity. We know, however, that uniform appearance can be misleading. For example, flushing concentrated hydrochloric acid through an apparently homogeneous core plug often produces "wormholes" in higher permeability regions. Also, we sometimes find that all core plugs from a region of interest have obvious heterogeneities, so any flooding tests must be run on nonhomogeneous core plugs. plugs. Nevertheless, relative permeabilities, as obtained routinely from core waterflood data, are calculated using the assumption that the core is a homogeneous porous medium. While it is obvious that porous medium. While it is obvious that heterogeneties mill affect these apparent relative permeabilities, there appear to be no experimental permeabilities, there appear to be no experimental results reported in the literature to indicate just how serious the problem is. Accordingly, a computer simulation study of core waterfloods was conducted to systematically examine the effects of different sizes and types of core heterogeneities on flood results. The study was performed by numerical simulation using two-dimensional, two-phase difference equation approximations to describe the immiscible water-oil displacement. For each simulation the permeability and porosity distribution of the heterogeneous core to be studied was specified; fluid flow characteristics of the system, including a single set of input relative-permeabilities curves, were stipulated The system was set in capillary pressure equilibrium at the reducible water saturation. Then a waterflood simulation was performed. From the resulting fluid production and pressure-drop data a set of production and pressure-drop data a set of relative-permeability curves was calculated using the standard computational procedure applicable to homogeneous cores. In this paper these calculated relative-permeability curves are denoted as "waterflood" curves to distinguish them from the specified input curves. The waterflood relative-permeability curves should closely match the input curves for homogeneous systems. Since the same set of input relative-permeability curves was used for all rock sections, deviations of the waterflood from the input relative-permeability curves gave an indication of the effects of heterogeneities. When the system was heterogeneous and there was good agreement between waterflood and input relative-permeability curves, then the heterogeneities did not strongly influence the flow behavior and the system responded homogeneously. MATHEMATICAL MODEL AND METHOD The waterflood simulations were carried out using two-dimensional, two-phase difference equation approximations to the incompressible-flow differential equations:* .....................(1) ....................(2) SPEJ P. 381


2017 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Renyi Cao ◽  
Junjie Xu ◽  
Xiaoping Yang ◽  
Renkai Jiang ◽  
Changchao Chen

During oilfield development, there exist multi-cycle gas–water mutual displacement processes. This means that a cycling process such as water driving gas–gas driving water–water driving gas is used for the operation of injection and production in a single well (such as foam huff and puff in single well or water-bearing gas storage). In this paper, by using core- and micro-pore scales model, we study the distribution of gas and water and the flow process of gas-water mutual displacement. We find that gas and water are easier to disperse in the porous media and do not flow in continuous gas and water phases. The Jamin effect of the gas or bubble becomes more severe and makes the flow mechanism of multi-cycle gas–water displacement different from the conventional water driving gas or gas driving water processes. Based on experiments of gas–water mutual displacement, the changing mechanism of gas–water displacement is determined. The results indicate that (1) after gas–water mutual displacement, the residual gas saturation of a gas–water coexistence zone becomes larger and the two-phase zone becomes narrower, (2) increasing the number of injection and production cycles causes the relative permeability of gas to increase and relative permeability for water to decrease, (3) it becomes easier for gas to intrude and the invaded water becomes more difficult to drive out and (4) the microcosmic fluid distribution of each stage have a great difference, which caused the two-phase region becomes narrower and effective volume of gas storage becomes narrower.


1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


Author(s):  
Yoshiyuki Iso ◽  
Xi Chen

Gas-liquid two-phase flows on the wall like liquid film flows, which are the so-called wetted wall flows, are observed in many industrial processes such as absorption, desorption, distillation and others. For the optimum design of packed columns widely used in those kind of processes, the accurate predictions of the details on the wetted wall flow behavior in packing elements are important, especially in order to enhance the mass transfer between the gas and liquid and to prevent flooding and channeling of the liquid flow. The present study focused on the effects of the change of liquid flow rate and the wall surface texture treatments on the characteristics of wetted wall flows which have the drastic flow transition between the film flow and rivulet flow. In this paper, the three-dimensional gas-liquid two-phase flow simulation by using the volume of fluid (VOF) model is applied into wetted wall flows. Firstly, as one of new interesting findings in this paper, present results showed that the hysteresis of the flow transition between the film flow and rivulet flow arose against the increasing or decreasing stages of the liquid flow rate. It was supposed that this transition phenomenon depends on the history of flow pattern as the change of curvature of interphase surface which leads to the surface tension. Additionally, the applicability and accuracy of the present numerical simulation were validated by using the existing experimental and theoretical studies with smooth wall surface. Secondary, referring to the texture geometry used in an industrial packing element, the present simulations showed that surface texture treatments added on the wall can improve the prevention of liquid channeling and can increase the wetted area.


Sign in / Sign up

Export Citation Format

Share Document