An ANN model to predict oil recovery from a 5-spot waterflood of a heterogeneous reservoir

Author(s):  
Shams Kalam ◽  
Usama Yousuf ◽  
Sidqi A. Abu-Khamsin ◽  
Umair Bin Waheed ◽  
Rizwan Ahmed Khan
2014 ◽  
Vol 47 (3) ◽  
pp. 247-254
Author(s):  
Soohyun Baek ◽  
Woodong Jung ◽  
Wonmo Sung ◽  
Junwoo Seo

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hung Vo Thanh ◽  
Yuichi Sugai ◽  
Kyuro Sasaki

Abstract Residual Oil Zones (ROZs) become potential formations for Carbon Capture, Utilization, and Storage (CCUS). Although the growing attention in ROZs, there is a lack of studies to propose the fast tool for evaluating the performance of a CO2 injection process. In this paper, we introduce the application of artificial neural network (ANN) for predicting the oil recovery and CO2 storage capacity in ROZs. The uncertainties parameters, including the geological factors and well operations, were used for generating the training database. Then, a total of 351 numerical samples were simulated and created the Cumulative oil production, Cumulative CO2 storage, and Cumulative CO2 retained. The results indicated that the developed ANN model had an excellent prediction performance with a high correlation coefficient (R2) was over 0.98 on comparing with objective values, and the total root mean square error of less than 2%. Also, the accuracy and stability of ANN models were validated for five real ROZs in the Permian Basin. The predictive results were an excellent agreement between ANN predictions and field report data. These results indicated that the ANN model could predict the CO2 storage and oil recovery with high accuracy, and it can be applied as a robust tool to determine the feasibility in the early stage of CCUS in ROZs. Finally, the prospective application of the developed ANN model was assessed by optimization CO2-EOR and storage projects. The developed ANN models reduced the computational time for the optimization process in ROZs.


SPE Journal ◽  
2009 ◽  
Vol 14 (02) ◽  
pp. 237-244 ◽  
Author(s):  
Pingping Shen ◽  
Jialu Wang ◽  
Shiyi Yuan ◽  
Taixian Zhong ◽  
Xu Jia

Summary The fluid-flow mechanism of enhanced oil recovery (EOR) in porous media by alkali/surfactant/polymer (ASP) flooding is investigated by measuring the production performance, pressure, and saturation distributions through the installed differential-pressure transducers and saturation-measurement probes in a physical model of a vertical heterogeneous reservoir. The fluid-flow variation in the reservoir is one of the main mechanisms of EOR of ASP flooding, and the nonlinear coupling and interaction between pressure and saturation fields results in the fluid-flow variation in the reservoir. In the vertical heterogeneous reservoir, the ASP agents flow initially in the high-permeability layer. Later, the flow direction changes toward the low- and middle-permeability layers because the resistance in the high-permeability layer increases on physical and chemical reactions such as adsorption, retention, and emulsion. ASP flooding displaces not only the residual oil in the high-permeability layer but also the remaining oil in the low- and middle-permeability layers by increasing both swept volume and displacement efficiency. Introduction Currently, most oil fields in China are in the later production period and the water cut increases rapidly, even to more than 80%. Waterflooding no longer meets the demands of oilfield production. Thus, it is inevitable that a new technology will replace waterflooding. The new technique of ASP flooding has been developed on the basis of alkali-, surfactant-, and polymer-flooding research in the late 1980s. ASP flooding uses the benefits of the three flooding methods simultaneously, and oil recovery is greatly enhanced by decreasing interfacial tension (IFT), increasing the capillary number, enhancing microscopic displacing efficiency, improving the mobility ratio, and increasing macroscopic sweeping efficiency (Shen and Yu 2002; Wang et al. 2000; Wang et al. 2002; Sui et al. 2000). Recently, much intensive research has been done on ASP flooding both in China and worldwide, achieving some important accomplishments that lay a solid foundation for the extension of this technique to practical application in oil fields (Baviere et al. 1995; Thomas 2005; Yang et al. 2003; Li et al. 2003). In previous work, the ASP-flooding mechanism was studied visually by using a microscopic-scale model and double-pane glass models with sand (Liu et al. 2003; Zhang 1991). In these experiments, the water-viscosity finger, the residual-oil distribution after waterflooding, and the oil bank formed by microscopic emulsion flooding were observed. In Tong et al. (1998) and Guo (1990), deformation, threading, emulsion (oil/water), and strapping were observed as the main mechanisms of ASP flooding in a water-wetting reservoir, while the interface-producing emulsion (oil/water), bridging between inner pore and outer pore, is the main mechanism of ASP flooding in an oil-wetting reservoir. For a vertical heterogeneous reservoir, ASP flooding increases displacement efficiency by displacing residual oil through decreased IFT, simultaneously improving sweep efficiency by extending the swept area in both vertical and horizontal directions. Some physical and chemical phenomena, such as emulsion, scale deposition, and chromatographic separation, occur during ASP flooding (Arihara et al. 1999; Guo 1999). Because ASP flooding in porous media involves many complicated physicochemical properties, many oil-recovery mechanisms still need to be investigated. Most research has been performed on the microscopic displacement mechanism of ASP flooding, while the fluid-flow mechanism in porous media at the macroscopic scale lacks sufficient study. In this paper, a vertical-heterogeneous-reservoir model is established, and differential-pressure transducers and saturation-measuring probes are installed. The fluid-flow mechanism of increasing both macroscopic sweep efficiency and microscopic displacement efficiency is studied by measuring the production performance and the variation of pressure and saturation distributions in the ASP-flooding experiment. An experimental database of ASP flooding also is set up and provides an experimental base for numerical simulation.


2013 ◽  
Vol 16 (01) ◽  
pp. 97-116 ◽  
Author(s):  
W. Terry Osterloh ◽  
Don S. Mims ◽  
W. Scott Meddaugh

Summary The First-Eocene heavy-oil reservoir (1E) in the Wafra field is a candidate for steamflooding because of its world-class resource base and low-estimated primary recovery. However, industry has little experience in steamflooding carbonate reservoirs, which has prompted the staging of several 1E steamflooding tests, the latest of which is the large-scale pilot (LSP) started in 2009. To assist in facilities design, to help understand expected performance in a very heterogeneous reservoir, and to provide input to early-decision analyses, numerical thermal simulation was used to generate probabilistic forecasts. When adequate pilot history was available, the model was validated with probabilistic methods. The LSP model contained 1.5 million cells, which allowed the maintenance of adequate resolution and proper boundary conditions in the pilot area. Parallel computation enabled a probabilistic workflow to be implemented with this large thermal model. In this paper, we highlight the methodologies and inputs used to generate the probabilistic forecasts and validate the model. Major results of this work include the following: In contrast to many greenfield forecasts, the LSP forecasts were conservative, likely because of the unique aspects of the forecasting methodology, proper selection of uncertainty ranges, and the relatively high density of input data for model construction; wide variations in production metrics were forecast, indicative of a highly heterogeneous reservoir; results indicated that the validated model adequately captured the global or statistical pilot heterogeneity, enabling proper capture of steamflood flow/drainage mechanisms; and despite this heterogeneity, forecast oil-recovery levels were comparable with those observed in steamfloods in sandstone reservoirs.


Author(s):  
Mohammad Yunus Khan ◽  
Ajay Mandal

AbstractAvailability of gases at the field level makes attractive to water-alternating-gas (WAG) process for low viscosity and light oils carbonate reservoir. However, impact of reservoir heterogeneity on WAG performance is crucial before field application. In general, ramp carbonates have heterogeneity due to variation of permeability and porosity. However, WAG performance significantly affected by permeability variations. This article investigates merits and demerits of WAG displacement due to permeability heterogeneities such as permeability anisotropy, high permeability streaks (HKS), matrix permeability, dolomite and thin dense stylolite layers. High-resolution compositional simulations with tuned equation of state (EoS) were carried out using 2D and 3D sector models. The study focuses on WAG performance in terms of oil recovery, vertical sweep, solvent utilization, gas oil ratio (GOR), water cut (WCT), WAG response time, gravity override, hysteresis, un-contacted oil saturation and economics. The results of simulation show that the heterogeneous reservoir provides initially faster WAG response, lower expected ultimate recovery (EUR), faster gas breakthrough, higher GOR and WCT production compared to homogeneous reservoir. The gas gravity override at smaller wells spacing is less in homogeneous reservoir as compared to heterogeneous reservoir, but it is reverse in case of larger well spacing. In heterogeneous reservoir, the HKS shows significant gas override resulting in poor vertical sweep due to capillary holding, and the high permeability dolomite layer shows early water breakthrough. This reservoir has higher solvent utilization in initial stage, and then, it becomes nearly equal to homogeneous reservoir. Simulation in both reservoirs overestimates incremental recovery of 2–3% OOIP at one pore volume injection because of not involving un-contacted oil saturation as predicted in core flood. The findings of this study will help to understand WAG performance and design in highly heterogeneous reservoirs for field applications. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document