Numerical Simulation on the Oil Recovery from an Areally Heterogeneous Reservoir by Polymer Augmented Waterflood

2009 ◽  
Vol 31 (20) ◽  
pp. 1873-1882 ◽  
Author(s):  
K. S. Lee
2020 ◽  
pp. 014459872098361
Author(s):  
Zhongbao Wu ◽  
Qingjun Du ◽  
Bei Wei ◽  
Jian Hou

Foam flooding is an effective method for enhancing oil recovery in high water-cut reservoirs and unconventional reservoirs. It is a dynamic process that includes foam generation and coalescence when foam flows through porous media. In this study, a foam flooding simulation model was established based on the population balance model. The stabilizing effect of the polymer and the coalescence characteristics when foam encounters oil were considered. The numerical simulation model was fitted and verified through a one-dimensional displacement experiment. The pressure difference across the sand pack in single foam flooding and polymer-enhanced foam flooding both agree well with the simulation results. Based on the numerical simulation, the foam distribution characteristics in different cases were studied. The results show that there are three zones during foam flooding: the foam growth zone, stable zone, and decay zone. These characteristics are mainly influenced by the adsorption of surfactant, the gas–liquid ratio, the injection rate, and the injection scheme. The oil recovery of polymer-enhanced foam flooding is estimated to be 5.85% more than that of single foam flooding. Moreover, the growth zone and decay zone in three dimensions are considerably wider than in the one-dimensional model. In addition, the slug volume influences the oil recovery the most in the foam enhanced foam flooding, followed by the oil viscosity and gas-liquid ratio. The established model can describe the dynamic change process of foam, and can thus track the foam distribution underground and aid in optimization of the injection strategies during foam flooding.


2013 ◽  
Vol 112 ◽  
pp. 248-257 ◽  
Author(s):  
Jing Wang ◽  
Huiqing Liu ◽  
Zenglin Wang ◽  
Jie Xu ◽  
Dengyu Yuan

SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 440-447 ◽  
Author(s):  
C.C.. C. Ezeuko ◽  
J.. Wang ◽  
I.D.. D. Gates

Summary We present a numerical simulation approach that allows incorporation of emulsion modeling into steam-assisted gravity-drainage (SAGD) simulations with commercial reservoir simulators by means of a two-stage pseudochemical reaction. Numerical simulation results show excellent agreement with experimental data for low-pressure SAGD, accounting for approximately 24% deficiency in simulated oil recovery, compared with experimental data. Incorporating viscosity alteration, multiphase effect, and enthalpy of emulsification appears sufficient for effective representation of in-situ emulsion physics during SAGD in very-high-permeability systems. We observed that multiphase effects appear to dominate the viscosity effect of emulsion flow under SAGD conditions of heavy-oil (bitumen) recovery. Results also show that in-situ emulsification may play a vital role within the reservoir during SAGD, increasing bitumen mobility and thereby decreasing cumulative steam/oil ratio (cSOR). Results from this work extend understanding of SAGD by examining its performance in the presence of in-situ emulsification and associated flow of emulsion with bitumen in porous media.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Irfan Tai ◽  
Marie Ann Giddins ◽  
Ann Muggeridge

Summary The viability of any enhanced-oil-recovery project depends on the ability to inject the displacing fluid at an economic rate. This is typically evaluated using finite-volume numerical simulation. These simulators calculate injectivity using the Peaceman method (Peaceman 1978), which assumes that flow is Newtonian. Most polymer solutions exhibit some degree of non-Newtonian behavior resulting in a changing polymer viscosity with distance from the injection well. For shear-thinning polymer solutions, conventional simulations can overpredict injection-well bottomhole pressure (BHP) by several hundred psi, unless a computationally costly local grid refinement is used in the near-wellboreregion. We show theoretically and numerically that the Peaceman pressure-equivalent radius, based on Darcy flow, is not correct when fluids are shear thinning, and derive an analytical expression for calculating the correct radius. The expression does not depend on any particular functional relationship between polymer-solution viscosity and velocity. We test it using the relationship described by the Meter equation (Meter and Bird 1964) and the Cannella et al. (1988) correlation. Numerical tests indicate that the solution provides a significant improvement in the accuracy of BHP calculations for conventional numerical simulation, reducing or removing the need for expensive local grid refinement around the well when simulating the injection of fluids with shear-thinningnon-Newtonianrheology.


Author(s):  
Qichen Zhang ◽  
Xiaodong Kang ◽  
Huiqing Liu ◽  
Xiaohu Dong ◽  
Jian Wang

AbstractCurrently, the reservoir heterogeneity is a serious challenge for developing oil sands with SAGD method. Nexen’s Long Lake SAGD project reported that breccia interlayer was widely distributed in lower and middle part of reservoir, impeding the steam chamber expansion and heated oil drainage. In this paper, two physical experiments were conducted to study the impact of breccia interlayer on development of steam chamber and production performance. Then, a laboratory scale numerical simulation model was established and a history match was conducted based on the 3D experimental results. Finally, the sensitivity analysis of thickness and permeability of breccia layer was performed. The influence mechanism of breccia layer on SAGD performance was analyzed by comparing the temperature profile of steam chamber and production dynamics. The experimental results indicate that the existence of breccia interlayer causes a thinner steam chamber profile and longer time to reach the peak oil rate. And, the ultimate oil recovery reduced 15.8% due to much oil stuck in breccia interlayer areas. The numerical simulation results show that a lower permeability in breccia layer area has a serious adverse impact on oil recovery if the thickness of breccia layer is larger, whereas the effect of permeability on SAGD performance is limited when the breccia layer is thinner. Besides, a thicker breccia layer can increase the time required to reach the peak oil rate, but has a little impact on the ultimate oil recovery.


2014 ◽  
Vol 47 (3) ◽  
pp. 247-254
Author(s):  
Soohyun Baek ◽  
Woodong Jung ◽  
Wonmo Sung ◽  
Junwoo Seo

2021 ◽  
Author(s):  
Mohammed T. Al-Murayri ◽  
Abrahim A. Hassan ◽  
Deema Alrukaibi ◽  
Amna Al-Qenae ◽  
Jimmy Nesbit ◽  
...  

Abstract Mature carbonate reservoirs under waterflood in Kuwait suffer from relatively low oil recovery due to poor sweep efficiency, both areal and microscopic. An Alkaline-Surfactant-Polymer (ASP) pilot is in progress targeting the Sabriyah Mauddud (SAMA) reservoir in pursuit of reserves growth and production sustainability. SAMA suffers from reservoir heterogeneities mainly associated with permeability contrast which may be improved with a conformance treatment to de-risk pre-mature breakthrough of water and chemical EOR agents in preparation for subsequent ASP injection and to improve reservoir contact by the injected fluids. Design of the gel conformance treatment was multi-faceted. Rapid breakthrough of tracers at the pilot producer from each of the individual injectors, less than 3 days, implied a direct connection from the injectors to the producer and poses significant risk to the success of the pilot. A dynamic model of the SAMA pilot was used to estimate in the potential injection of either a high viscous polymer solution (~200 cp) or a gel conformance treatment to improve contact efficiency, diverting injected fluid into oil saturated reservoir matrix. High viscosity polymer injection scenarios were simulated in the extracted subsector model and showed little to no effect on diverting fluids from the high permeability streak into the matrix. Gel conformance treatment, however, provides benefit to the SAMA pilot with important limitations. Gel treatment diverts injected fluid from the high permeability zone into lower permeability, higher oil saturated reservoir. After a gel treatment, the ASP increases the oil cut from 3% to 75% while increasing the cumulative oil recovery by more than 50 MSTB oil over ASP following a high viscosity polymer slug alone. Laboratory design of the gel conformance system for the SAMA ASP pilot involved blending of two polymer types (AN 125SH, an ATBS type polymer, and P320 VLM and P330, synthetic copolymers) and two crosslinkers (chromium acetate and X1050, an organic crosslinker). Bulk testing with the polymer-crosslinker combinations indicated that SAMA reservoir brine resulted in not gel system that would work in the SAMA reservoir, resulting in the recommendation of using 2% KCl in treated water for gel formulation. AN 125 SH with S1050 produce good gels but with short gelation times and AS 125 SH with chromium acetate developed low gels consistency in both waters. P330 and P320 VLM gave good gels with slow gelation times with X1050 crosslinker in 2% KCl. Corefloods with the P330-X 1050 showed good injectivity and ultimately a reduction of permeability of about 200-fold. A P330-X 1050 was recommended for numerical simulation studies. Numerical simulator was calibrated by matching bulk gel viscosity increases and coreflood permeability changes. Numerical simulation indicated two of the four injection wells (SA-0557 and SA-0559) injection profile will change compared to water. Overall injection rate was reduced by the conformance treatment and was the corresponding oil rate. Total oil production from the center pilot production well (SA-0560) decreased with gel treatment but ultimately increased to greater rates


2021 ◽  
Author(s):  
Marisely Urdaneta

Abstract This paper aims to address calibration of a coreflood Alkali Surfactant Polymer (ASP) formulation experiment through parametrization of fluid-fluid and rock-fluid interactions considering cation exchange capacity and by rock to guide an ASP pilot design. First of all, a series of chemical formulation experiments were studied in cores drilled from clastic reservoir so that displacement lab tests were run on linear and radial cores to determine the potential for oil recovery by ASP flooding and recommended the chemical formulation and flooding schemes, in terms of oil recovery. Therefore, to simulate the process, those tests performed with radial core injection were taken, because this type of test has a better representation of the fluid flow in reservoir, the fluids are injected by a perforation in the center of the core, moving in a radial direction the fluids inside the porous medium. Subsequently, displaced fluids are collected on the periphery of the core carrier and stored in graduated test tubes. The recommended test was carried out to the phase of numerical simulation and historical matching. Reservoir simulation is one of the most important tools available to predict behavior under chemical flooding conditions and to study sensitivities based on cost-effective process implementation. Then, a radial core simulation model was designed from formulation data with porosity of 42.6%, a pore volume (PV) of 344.45 ml, radius of 7.17 cm and weight of 1225.84 g. The initial oil saturation was 0.748 PV (257.58 ml), with a critical water saturation of 0.252 PV (86.78 ml). For the simulation model historical matching, adjustments were made until an acceptable comparison was obtained with laboratory test production data through parameterization of relative permeability curves, chemical adsorption parameters, polymer viscosity, among others; resulting in an accumulated effluents production mass 37% greater for alkali than obtained in the historical, regarding to surfactant the deviation was 8% considered acceptable and for the polymer the adjustment was very close. For the injector well bottom pressure, the viscosity ratio of the mixture was considered based on the polymer concentration and the effect of the shear rate on the viscosity of the polymer as well as the effect of salinity in the alkali case. Finally, a calibrated coreflood numerical simulation model was obtained for ASP flooding to design an ASP Pilot with a residual oil saturation of 0.09 PV (31 ml) meaning 64% more recovered oil compared to a waterflooding case.


Sign in / Sign up

Export Citation Format

Share Document