scholarly journals Field-scale investigation of different miscible CO2-injection modes to improve oil recovery in a clastic highly heterogeneous reservoir

2016 ◽  
Vol 7 (1) ◽  
pp. 125-146 ◽  
Author(s):  
Ahmed Khalil Jaber ◽  
Mariyamni B. Awang
Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 94
Author(s):  
Asep Kurnia Permadi ◽  
Egi Adrian Pratama ◽  
Andri Luthfi Lukman Hakim ◽  
Doddy Abdassah

A factor influencing the effectiveness of CO2 injection is miscibility. Besides the miscible injection, CO2 may also contribute to oil recovery improvement by immiscible injection through modifying several properties such as oil swelling, viscosity reduction, and the lowering of interfacial tension (IFT). Moreover, CO2 immiscible injection performance is also expected to be improved by adding some solvent. However, there are a lack of studies identifying the roles of solvent in assisting CO2 injection through observing those properties simultaneously. This paper explains the effects of CO2–carbonyl and CO2–hydroxyl compounds mixture injection on those properties, and also the minimum miscibility pressure (MMP) experimentally by using VIPS (refers to viscosity, interfacial tension, pressure–volume, and swelling) apparatus, which has a capability of measuring those properties simultaneously within a closed system. Higher swelling factor, lower viscosity, IFT and MMP are observed from a CO2–propanone/acetone mixture injection. The role of propanone and ethanol is more significant in Sample A1, which has higher molecular weight (MW) of C7+ and lower composition of C1–C4, than that in the other Sample A9. The solvents accelerate the ways in which CO2 dissolves and extracts oil, especially the extraction of the heavier component left in the swelling cell.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


2016 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
H. Karimaie ◽  
O. Torsæter

The purpose of the three experiments described in this paper is to investigate the efficiency of secondary andtertiary gas injection in fractured carbonate reservoirs, focusing on the effect of equilibrium gas,re-pressurization and non-equilibrium gas. A weakly water-wet sample from Asmari limestone which is the mainoil producing formation in Iran, was placed vertically in a specially designed core holder surrounded withfracture. The unique feature of the apparatus used in the experiment, is the capability of initializing the samplewith live oil to obtain a homogeneous saturation and create the fracture around it by using a special alloy whichis easily meltable. After initializing the sample, the alloy can be drained from the bottom of the modified coreholder and create the fracture which is filled with live oil and surrounded the sample. Pressure and temperaturewere selected in the experiments to give proper interfacial tensions which have been measured experimentally.Series of secondary and tertiary gas injection were carried out using equilibrium and non-equilibrium gas.Experiments have been performed at different pressures and effect of reduction of interfacial tension werechecked by re-pressurization process. The experiments showed little oil recovery due to water injection whilesignificant amount of oil has been produced due to equilibrium gas injection and re-pressurization. Results alsoreveal that CO2 injection is a very efficient recovery method while injection of C1 can also improve the oilrecovery.


2014 ◽  
Vol 47 (3) ◽  
pp. 247-254
Author(s):  
Soohyun Baek ◽  
Woodong Jung ◽  
Wonmo Sung ◽  
Junwoo Seo

2021 ◽  
Vol 73 (06) ◽  
pp. 65-66
Author(s):  
Judy Feder

This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 200460, “A Case Study of SACROC CO2 Flooding in Marginal Pay Regions: Improving Asset Performance,” by John Kalteyer, SPE, Kinder Morgan, prepared for the 2020 SPE Improved Oil Recovery Conference, originally scheduled to be held in Tulsa, 18–22 April. The paper has not been peer reviewed. As one of the first fields in the world to use carbon dioxide (CO2) in enhanced oil recovery (EOR), the Scurry Area Canyon Reef Operators Committee (SACROC) unit of the Kelly-Snyder field in the Midland Basin of Texas provides a unique opportunity to study, learn from, and improve upon the development of CO2 flood technology. The complete paper reviews the history of EOR at SACROC, discusses changes in theory over time, and provides a look at the field’s future. Field Overview and Development History The first six pages of the paper discuss the field’s location, geology, and development before June 2000, when Kinder Morgan acquired the SACROC unit and took over as operator. Between initial gas injection in 1972 and 2000, approximately 1 TCF of CO2 had been injected into the Canyon Reef reservoir. Since 2000, cumulative CO2 injection has sur-passed 7 TCF and yielded cumulative EOR of over 180 million bbl. The reservoir is a primarily limestone reef complex containing an estimated original oil in place (OOIP) of just under 3 billion bbl. The reservoir ranges from 200 ft gross thickness in the south to 900 ft in the north, where the limestone matrix averages 8% porosity and 20-md permeability. The Canyon Reef structure is divided into four major intervals, of which the Upper Canyon zone provides the highest-quality pay. The field was discovered in 1948 at a pressure of 3,122 psi. By late 1950, 1,600 production wells had been drilled and the reservoir pressure plummeted, settling as low as 1,700 psi. Waterflooding begun in 1954 enabled the field to continue producing for nearly 20 years, at which time the operators deter-mined that another recovery mechanism would be needed to maximize recovery and reach additional areas of the field. The complete paper discusses various CO2 injection programs that were developed and applied—including a true tertiary response from a miscible CO2 flood in 1981—along with their outcomes. Acquisition and CO2-Injection Redevelopment In June 2000 Kinder Morgan acquired the SACROC Unit and took over as operator. Approximately 6.7 billion bbl of water and 1.3 TCF of CO2 had been injected across the unit to that date, but the daily oil rate of 8,700 B/D was approaching the field’s economic limit. An estimated 40% of the OOIP had been produced through the combination of recovery methods that each previous operator had used. Expanding on the conclusions of its immediate predecessor, the operator initiated large-scale CO2-flood redevelopment in a selection of project areas. These redevelopments were based on several key distinctions differentiating them from previous injection operations.


Sign in / Sign up

Export Citation Format

Share Document