scholarly journals Pharmacological actions of Dieckol on modulation of platelet functions and thrombus formation via integrin αIIbβ3 and cAMP signaling

2022 ◽  
pp. 106088
Author(s):  
Muhammad Irfan ◽  
Tae-Hyung Kwon ◽  
Hyuk-Woo Kwon ◽  
Man Hee Rhee
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Muhammad Irfan ◽  
Tae-Hyung Kwon ◽  
Dong-Ha Lee ◽  
Seung-Bok Hong ◽  
Jae-Wook Oh ◽  
...  

Background and Objective. Epimedium koreanum Nakai is a medicinal plant known for its health beneficial effects on impotence, arrhythmia, oxidation, aging, osteoporosis, and cardiovascular diseases. However, there is no report available that shows its effects on platelet functions. Here, we elucidated antiplatelet and antithrombotic effects of ethyl acetate fraction of E. koreanum. Methodology. We analyzed the antiplatelet properties using standard in vitro and in vivo techniques, such as light transmission aggregometry, scanning electron microscopy, intracellular calcium mobilization measurement, dense granule secretion, and flow cytometry to assess integrin αIIbβ3 activation, clot retraction, and Western blot, on washed platelets. The antithrombotic effects of E. koreanum were assessed by arteriovenous- (AV-) shunt model in rats, and its effects on hemostasis were analyzed by tail bleeding assay in mice. Key Results. E. koreanum inhibited platelet aggregation in agonist-stimulated human and rat washed platelets, and it also reduced calcium mobilization, ATP secretion, and TXB2 formation. Fibrinogen binding, fibronectin adhesion, and clot retraction by attenuated integrin αIIbβ3-mediated inside-out and outside-in signaling were also decreased. Reduced phosphorylation of extracellular signal-regulated kinases (ERK), Akt, PLCγ2, and Src was observed. Moreover, the fraction inhibited thrombosis. HPLC results revealed that the fraction predominantly contained icariin. Conclusion and Implications. E. koreanum inhibited platelet aggregation and thrombus formation by attenuating calcium mobilization, ATP secretion, TXB2 formation, and integrin αIIbβ3 activation. Therefore, it may be considered as a potential candidate to treat and prevent platelet-related cardiovascular disorders.


Author(s):  
Alexander Witte ◽  
Anne-Katrin Rohlfing ◽  
Benjamin Dannenmann ◽  
Valerie Dicenta ◽  
Masoud Nasri ◽  
...  

Abstract Aims  Beyond classical roles in thrombosis and haemostasis, it becomes increasingly clear that platelets contribute as key players to inflammatory processes. The involvement of platelets in these processes is often mediated through a variety of platelet-derived chemokines which are released upon activation and act as paracrine and autocrine factors. In this study, we investigate CXCL14, a newly described platelet chemokine and its role in thrombus formation as well as monocyte and platelet migration. In addition, we examine the chemokine receptor CXCR4 as a possible receptor for CXCL14 on platelets. Furthermore, with the use of artificially generated platelets derived from induced pluripotent stem cells (iPSC), we investigate the importance of CXCR4 for CXCL14-mediated platelet functions. Methods and results  In this study, we showed that CXCL14 deficient platelets reveal reduced thrombus formation under flow compared with wild-type platelets using a standardized flow chamber. Addition of recombinant CXCL14 normalized platelet-dependent thrombus formation on collagen. Furthermore, we found that CXCL14 is a chemoattractant for platelets and mediates migration via CXCR4. CXCL14 promotes platelet migration of platelets through the receptor CXCR4 as evidenced by murine CXCR4-deficient platelets and human iPSC-derived cultured platelets deficient in CXCR4. We found that CXCL14 directly interacts with the CXCR4 as verified by immunoprecipitation and confocal microscopy. Conclusions  Our results reveal CXCL14 as a novel platelet-derived chemokine that is involved in thrombus formation and platelet migration. Furthermore, we identified CXCR4 as principal receptor for CXCL14, an interaction promoting platelet migration.


2020 ◽  
Vol 319 (1) ◽  
pp. H133-H143 ◽  
Author(s):  
Haichen Lv ◽  
Ruopeng Tan ◽  
Jiawei Liao ◽  
Zhujing Hao ◽  
Xiaolei Yang ◽  
...  

Doxorubicin therapy in mice (antitumor dosage) markedly enhanced platelet functions measured as agonist-induced platelet aggregation, degranulation, and adhesion to endothelial cells, actions leading to thrombus formation and thrombosis-independent vascular injury. Clopidogrel treatment ameliorated thrombus formation and vascular toxicity induced by doxorubicin via inhibiting platelet activity.


2018 ◽  
Vol 19 (8) ◽  
pp. 2306 ◽  
Author(s):  
Tong-Dan Liu ◽  
Shen-Hong Ren ◽  
Xue Ding ◽  
Zhou-Ling Xie ◽  
Yi Kong

Integrin αIIbβ3 plays a pivotal role in platelet aggregation. Three αIIbβ3 antagonists have been approved by the Food and Drug Administration (FDA) for the treatment of cardiovascular diseases. Unfortunately, all of these three drugs can cause the side effect of severe bleeding. Therefore, developing a new αIIbβ3 antagonist with low bleeding was needed. In the present study, we screened compounds by using a fibrinogen/integrin αIIbβ3 enzyme-linked immunosorbent assay (ELISA), and a novel αIIbβ3 antagonist ANTP266 was attained. The antithrombotic effects of ANTP266 were estimated by using two animal models, the bleeding risk was estimated by using a mice tail cutting assay, and the plasma half-life time was tested by LC-MS/MS. The results showed that ANTP266 potently decreased thrombosis formation, while not prolonging bleeding time at its effective dosage. The bleeding of ANTP266 reduced rapidly as time went on from 5 to 60 min, but tirofiban produced high bleeding continuously. The plasma half-life of ANTP266 in rats was 10.8 min. Taken together, ANTP266 is an effective antithrombotic agent with a low bleeding risk. The shorter bleeding time benefits from its short plasma half-life. ANTP266 could be a candidate for developing the αIIbβ3 antagonist of rapid elimination for a patient undergoing percutaneous coronary intervention.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 326-326
Author(s):  
Wolfgang Bergmeier ◽  
Jill R. Crittenden ◽  
Crystal L. Piffath ◽  
Denisa D. Wagner ◽  
David E. Housman ◽  
...  

Abstract Inside-out activation of platelet integrin αIIbβ3 is a key step in agonist-induced platelet aggregation. Recent studies suggested the involvement of the small GTPase Rap1b in this process as it is highly expressed in platelets and becomes activated during platelet activation. In cell lines, overexpression of the Rap activator CalDAG-GEFI increased αIIbβ3-dependent adhesion, while overexpression of RapGAP, which inactivates Rap1, reduced αIIbβ3 activity. Here we provide evidence that CalDAG-GEFI is an essential component of this pathway in vivo. To generate CalDAG-GEFI knockout mice, we engineered mouse embryonic stem (ES) cells with a deletion that results in a frameshift mutation and a premature stop codon at the position encoding the 37th amino acid of CalDAG-GEFI. These ES cells were then used to derive chimeric mice that yielded germline transmission of the CalDAG-GEFI mutation. Deficiency of CalDAG-GEFI in mutant mice was confirmed by immunohistochemistry and western blot analysis. CalDAG-GEFI−/− platelets showed impaired Rap1b activation and aggregation in response to various agonists, with aggregation being completely blocked when platelets were activated with ADP, thromboxaneA2 analog, or calcium ionophore. Under physiological flow conditions in vitro and in vivo, CalDAG-GEFI-deficient platelets showed normal tethering to basement membrane components but failed to form thrombi. Mice deficient in CalDAG-GEFI were further characterized by a greatly increased bleeding time as well as by a strong protection against collagen-induced pulmonary thrombosis. In summary, we identified CalDAG-GEFI as a key signal integrator in the cascade leading through Rap1 and integrin αIIbβ3 to platelet aggregation and thrombus formation. The fact that CalDAG-GEFI knockout mice are resistant to collagen-induced thrombosis, and do not undergo spontaneous hemorrhaging, suggests that CalDAG-GEFI may be a promising new target for antithrombotic therapy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3501-3501
Author(s):  
Jiansong Huang ◽  
Xiaofeng Shi ◽  
Wenda Xi ◽  
Ping Liu ◽  
Xiaodong Xi

Abstract The RGT sequences of the integrin β3 tail directly and constitutively bind the inactive c-Src, regulating integrin αIIbβ3 signaling and platelet function. Previous work has shown that disrupting the interaction of c-Src with β3 via myristoylated RGT peptide or deletion of the RGT sequences in β3 selectively inhibits integrin αIIbβ3 outside-in signaling in platelets. However, the precise molecular mechanisms by which the Src-β3 association regulates integrin αIIbβ3 signaling need to be clarified. We found that active c-Src phosphoylated the Y747 and Y759 residues of β3 directly at the in vitro protein/protein level or in CHO cell models bearing Tac-β3 chimeras, which were devoid of the intact β3 signal transduction. Furthermore, data from mass spectrometry, [γ-32P] ATP incorporation assays and CHO cell/Tac-β3 chimeras demonstrated that the direct phosphorylation of Y747 and Y759 by active c-Src did not depend on the binding of c-Src to the RGT sequences of the β3 tail. To further investigate the biological functions of Src-β3 association in signal transduction we employed a cell-permeable and reduction-sensitive peptide (myr-AC∼CRGT), which disrupted the Src-β3 association in platelets independent of membrane-anchorage, and found that when platelets were stimulated by thrombin the c-Src activation and the phosphorylation of the tyrosine residues of the β3 tail were substantially inhibited by the presence of the peptide. These results suggest that one of the crucial biological functions of Src-β3 association is to serve as a “bridge” linking integrin signaling with the c-Src full activation and phosphorylation of the tyrosines of the β3 tail. To answer whether the RGT peptide binding to Src is able to alter the enzymatic activity of c-Src, we examined the Src-Csk association, the phosphorylation status of Y416 and Y527 of c-Src and the c-Src kinase catalytic activity. Results showed that myr-AC∼CRGT did not dissociate Csk from c-Src in resting platelets and the phosphorylation level of Y416 and Y527 of c-Src remained unaltered. Consistent data were also obtained from in vitro analysis of the c-Src kinase catalytic activity in the presence of CRGT peptide. These results suggest that myr-AC∼CRGT peptide per se does not fully activate c-Src. Myr-AC∼CRGT was also found to inhibit integrin αIIbβ3 outside-in signaling in human platelets. To examine the effect of the myr-AC∼CRGT on platelet adhesion and aggregation under flow conditions, we measured the platelet thrombus formation under different shear rates. Myr-AC∼CRGT did not affect the platelet adhesion at a wall shear rate of 125 s-1. The inability of myr-AC∼CRGT to affect platelet adhesion and aggregation remained at 500 s-1 shear rates. At 1,500 s-1, or 5,000 s-1 rates, myr-AC∼CRGT partially inhibited platelet adhesion and aggregation. These observations indicate that the Src-regulated outside-in signaling plays a pivotal role in the stable thrombus formation and the thrombus growth under flow conditions. The present study reveals novel insights into the molecular mechanisms by which c-Src regulates integrin αIIbβ3 signaling, particularly the phorsphorylation of the β3 cytoplasmic tyrosines, and provides first evidence in human platelets that the RGT peptide or derivatives regulate thrombus formation through dissociating the Src-β3 interaction. The data of this work allow us to anticipate that intracellular delivery of the RGT peptide or its analogues may have potential in the development of a new antithrombotic strategy where only the Src-β3 interaction is specifically interrupted so as to provide an effective inhibition on thrombosis together with a decent hemostasis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 847-856 ◽  
Author(s):  
Alessandra Consonni ◽  
Lina Cipolla ◽  
Gianni Guidetti ◽  
Ilaria Canobbio ◽  
Elisa Ciraolo ◽  
...  

Abstract Integrin α2β1–mediated adhesion of human platelets to monomeric type I collagen or to the GFOGER peptide caused a time-dependent activation of PI3K and Akt phosphorylation. This process was abrogated by pharmacologic inhibition of PI3Kβ, but not of PI3Kγ or PI3Kα. Moreover, Akt phosphorylation was undetectable in murine platelets expressing a kinase-dead mutant of PI3Kβ (PI3KβKD), but occurred normally in PI3KγKD platelets. Integrin α2β1 failed to stimulate PI3Kβ in platelets from phospholipase Cγ2 (PLCγ2)–knockout mice, and we found that intracellular Ca2+ linked PLCγ2 to PI3Kβ activation. Integrin α2β1 also caused a time-dependent stimulation of the focal kinase Pyk2 downstream of PLCγ2 and intracellular Ca2+. Whereas activation of Pyk2 occurred normally in PI3KβKD platelets, stimulation of PI3Kβ was strongly reduced in Pyk2-knockout mice. Neither Pyk2 nor PI3Kβ was required for α2β1–mediated adhesion and spreading. However, activation of Rap1b and inside-out stimulation of integrin αIIbβ3 were reduced after inhibition of PI3Kβ and were significantly impaired in Pyk2-deficient platelets. Finally, both PI3Kβ and Pyk2 significantly contributed to thrombus formation under flow. These results demonstrate that Pyk2 regulates PI3Kβ downstream of integrin α2β1, and document a novel role for Pyk2 and PI3Kβ in integrin α2β1 promoted inside-out activation of integrin αIIbβ3 and thrombus formation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1050-1050
Author(s):  
Angela Doerr ◽  
Denise Pedrosa ◽  
Maria Schander ◽  
Yotis A. Senis ◽  
Alexandra Mazharian ◽  
...  

Abstract Background Thrombus formation is a complex, dynamic and multistep process, based on two crucial steps: platelet adhesion and platelet aggregation that both involve the large multimeric plasma glycoprotein Von Willebrand Factor (VWF). VWF binding to the GPIb/X/V complex initiates platelet adhesion to the vessel wall at high shear stress and triggers platelet activation resulting in the generation of thrombin and activation of integrin αIIbβ3 on the platelet surface. This activation of αIIbβ3 in turn leads to outside-in signalling and promotes binding of αIIbβ3 to fibrinogen and VWF, mediating thrombus growth. Trigging receptor expressed on myeloid cells like transcript-1 (TLT-1) is a transmembrane receptor, which is targeted to α-granules of platelets and megakaryocytes. Thrombin-induced platelet activation rapidly presents TLT-1 on the platelet surface and releases a soluble form (sTLT-1) into the circulation. To date the only known ligand for TLT-1 is fibrinogen and TLT-1 has been implicated in the regulation of inflammation-associated thrombosis. Interestingly, a putative interaction of VWF with TLT-1 was indicated by a screen with known platelet receptors. Aim We aimed to evaluate the effect of TLT-1/VWF interaction on platelet aggregation and thrombus formation. Methods Recombinant TLT-1 and VWF were purified and the interaction between TLT-1 and VWF was analyzed by surface plasmon resonance. Static interaction was confirmed by an ELISA based binding assay. Flow assays assessed TLT-1 dependent thrombus formation in vitro. The effects of TLT-1 knockout on thrombus formation in vivo were examined via intravital microscopy of the flow restricted inferior vena cava (IVC) and imaging of platelet attachment and fibrin formation over 6 hours. Furthermore, thrombus formation and resolution was followed by high resolution ultrasound imaging after stenosis induction for 28 days. Integrin aIIbb3 activation was analysed by flow cytometry using the JonA antibody in murine platelet rich plasma. Results VWF bound to soluble TLT-1 with high affinity in a calcium dependent manner (K D = 1.9 nM). The binding site on VWF was mapped to the A3D4 domains and high molecular weight VWF multimers had the greatest affinity for TLT-1. Moreover, HEK293 cells transfected with TLT-1 bound to VWF and VWF strings formed specifically on TLT-1 expressing cells, confirming the interaction between the two proteins. VWF inhibited the binding of fibrinogen to TLT-1, suggesting that VWF is a preferred binding partner of TLT-1. Human platelets exhibited increased TLT-1 surface expression after TRAP-6 induced platelet activation and TLT-1 was detected throughout thrombi formed under flow. Furthermore, a TLT-1 blocking antibody inhibited the interaction of TLT-1 with VWF and reduced platelet capture to type I collagen under shear stress. Ex vivo perfusion of blood from TLT-1 knock out mice over type I collagen also resulted in reduced thrombus formation compared to blood from wild-type mice. TLT-1 knock-out platelets were activated by thrombin similar to wild-type controls, based on P-selectin expression in platelet rich plasma. However, activation of integrin αIIbβ3 determined by JonA staining was reduced in the absence of TLT-1. This phenotype of reduced integrin αIIbβ3 activation on P-selectin positive platelets was phenocopied by the thrombin platelet response in platelet rich plasma from VWF -/- mice, but not GPIbα-deficient mice, indicating that the TLT-1-VWF interaction on platelets directly influences integrin αIIbβ3 activation. Significantly, thrombus formation was markedly reduced in TLT-1 knockout mice in the IVC model in vivo in comparison to wild-type mice. Conclusions This study demonstrates that TLT-1 is a novel platelet ligand for VWF, and that TLT-1 may preferentially bind VWF over fibrinogen. We propose a TLT-1/VWF dependent integrin αIIbβ3 activation mechanism which plays a pivotal role in thrombus formation under non-inflammatory and potentially inflammatory conditions. Disclosures Ruf: ICONIC Therapeutics: Consultancy; MeruVasimmune: Current holder of individual stocks in a privately-held company; ARCA bioscience: Consultancy, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document