Uncovering the mechanism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharmacology

Phytomedicine ◽  
2020 ◽  
Vol 77 ◽  
pp. 153274
Author(s):  
Ai-Ping Li ◽  
Liu Yang ◽  
Ting Cui ◽  
Li-Chao Zhang ◽  
Yue-Tao Liu ◽  
...  
2021 ◽  
Vol 10 (9) ◽  
pp. 2298-2306
Author(s):  
Xiaomin Wen ◽  
Wenxiang Wang ◽  
Mei Zheng ◽  
Bei Song

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Xie ◽  
Kainan Zhou ◽  
Yan Wang ◽  
Shuhan Yang ◽  
Suying Liu ◽  
...  

Background. Cancer-related fatigue (CRF) is an increasingly appreciated complication in cancer patients, which severely impairs their quality of life for a long time. Astragali Radix (AR) is a safe and effective treatment to improve CRF, but the related mechanistic studies are still limited. Objective. To systematically analyze the mechanism of AR against CRF by network pharmacology. Methods. TCMSP was searched to obtain the active compounds and targets of AR. The active compound-target (AC-T) network was established and exhibited by related visualization software. The GeneCards database was searched to acquire CRF targets, and the intersection targets with AR targets were used to make the Venny diagram. The protein-protein interaction (PPI) network of intersection targets was established, and further, the therapeutic core targets were selected by topological parameters. The selected core targets were uploaded to Metascape for GO and KEGG analysis. Finally, AutoDock Vina and PyMOL were employed for molecular docking validation. Results. 16 active compounds of AR were obtained, such as quercetin, kaempferol, 7-O-methylisomucronulatol, formononetin, and isorhamnetin. 57 core targets were screened, such as AKT1, TP53, VEGFA, IL-6, and CASP3. KEGG analysis manifested that the core targets acted on various pathways, including 137 pathways such as TNF, IL-17, and the AGE-RAGE signaling pathway. Molecular docking demonstrated that active compounds docked well with the core targets. Conclusion. The mechanism of AR in treating CRF involves multiple targets and multiple pathways. The present study laid a theoretical foundation for the subsequent research and clinical application of AR and its extracts against CRF.


2020 ◽  
Author(s):  
Chongmei Tian ◽  
Jing-bai Chen ◽  
Xiang Chen ◽  
Dao-zong Xia

Abstract Background Diabetic nephropathy (DN), a unique complication of diabetes, could contribute to an increase in mortality. In this study, we predicted and proved the molecular pharmacological mechanism concerning the protective effects of Astragali Radix on DN. Methods The same potential target genes from Astragali Radix and DN were analyzed and constructed the protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment-related major targets and signal pathways were performed. The drug-ingredients-target-disease network was visually built using Cytoscape 3.6.1. The beneficial pharmacological activities of quercetin from Astragali Radix were confirmed by CCK-8 assay, determination of antioxidant parameters and Western blotting analysis. Results There are 12 bioactive components from Astragali Radix and 56 same targets between Astragali Radix and DN. The GO analysis results showed that the biological processes mainly included protein homodimerization activity. KEGG analysis indicate that the screened targets were most closely linked to the mitogen-activated protein kinase (MAPK) signaling pathway. The drug-ingredients-target-disease network results revealed that the therapeutic effects of Astragali Radix mainly included oxidative stress, inflammatory reaction and apoptosis. During the verification process, quercetin from Astragali Radix could attenuate cytotoxicity, enhance catalase (CAT) and superoxide dismutase (SOD) activities and suppress MAPK signaling pathway. Conclusions In the current study, network pharmacology with experimental analysis predicted and proved the therapeutic function of Astragali Radix by improving antioxidant capacity and suppressing MAPK signaling pathway, these investigations could provide a new perspective for further exploration of Astragali Radix on DN treatment.


2020 ◽  
Vol 258 ◽  
pp. 112537 ◽  
Author(s):  
Ai-Ping Li ◽  
Sheng-Sheng He ◽  
Wang-Ning Zhang ◽  
Li-Chao Zhang ◽  
Yue-Tao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document