A hybrid model for lane change prediction with V2X-based driver assistance

2019 ◽  
Vol 534 ◽  
pp. 122033 ◽  
Author(s):  
Ting Xu ◽  
Ruisen Jiang ◽  
Changlei Wen ◽  
Meijun Liu ◽  
Jiehan Zhou
Author(s):  
Anik Das ◽  
Mohamed M. Ahmed

Accurate lane-change prediction information in real time is essential to safely operate Autonomous Vehicles (AVs) on the roadways, especially at the early stage of AVs deployment, where there will be an interaction between AVs and human-driven vehicles. This study proposed reliable lane-change prediction models considering features from vehicle kinematics, machine vision, driver, and roadway geometric characteristics using the trajectory-level SHRP2 Naturalistic Driving Study and Roadway Information Database. Several machine learning algorithms were trained, validated, tested, and comparatively analyzed including, Classification And Regression Trees (CART), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naïve Bayes (NB) based on six different sets of features. In each feature set, relevant features were extracted through a wrapper-based algorithm named Boruta. The results showed that the XGBoost model outperformed all other models in relation to its highest overall prediction accuracy (97%) and F1-score (95.5%) considering all features. However, the highest overall prediction accuracy of 97.3% and F1-score of 95.9% were observed in the XGBoost model based on vehicle kinematics features. Moreover, it was found that XGBoost was the only model that achieved a reliable and balanced prediction performance across all six feature sets. Furthermore, a simplified XGBoost model was developed for each feature set considering the practical implementation of the model. The proposed prediction model could help in trajectory planning for AVs and could be used to develop more reliable advanced driver assistance systems (ADAS) in a cooperative connected and automated vehicle environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Christina Ng ◽  
Susilawati Susilawati ◽  
Md Abdus Samad Kamal ◽  
Irene Mei Leng Chew

This paper aims at developing a macroscopic cell-based lane change prediction model in a complex urban environment and integrating it into cell transmission model (CTM) to improve the accuracy of macroscopic traffic state estimation. To achieve these objectives, first, based on the observed traffic data, the binary logistic lane change model is developed to formulate the lane change occurrence. Second, the binary logistic lane change is integrated into CTM by refining CTM formulations on how the vehicles in the cell are moving from one cell to another in a longitudinal manner and how cell occupancy is updated after lane change occurrences. The performance of the proposed model is evaluated by comparing the simulated cell occupancy of the proposed model with cell occupancy of US-101 next generation simulation (NGSIM) data. The results indicated no significant difference between the mean of the cell occupancies of the proposed model and the mean of cell occupancies of actual data with a root-mean-square-error (RMSE) of 0.04. Similar results are found when the proposed model was further tested with I80 highway data. It is suggested that the mean of cell occupancies of I80 highway data was not different from the mean of cell occupancies of the proposed model with 0.074 RMSE (0.3 on average).


Author(s):  
Oliver Scheel ◽  
Naveen Shankar Nagaraja ◽  
Loren Schwarz ◽  
Nassir Navab ◽  
Federico Tombari

2019 ◽  
Vol 52 (8) ◽  
pp. 221-226 ◽  
Author(s):  
Martin Krüger ◽  
Anne Stockem Novo ◽  
Till Nattermann ◽  
Manoj Mohamed ◽  
Torsten Bertram

2020 ◽  
Vol 10 (9) ◽  
pp. 3289
Author(s):  
Hanwool Woo ◽  
Mizuki Sugimoto ◽  
Hirokazu Madokoro ◽  
Kazuhito Sato ◽  
Yusuke Tamura ◽  
...  

In this paper, we propose a novel method to estimate a goal of surround vehicles to perform a lane change at a merging section. Recently, autonomous driving and advance driver-assistance systems are attracting great attention as a solution to substitute human drivers and to decrease accident rates. For example, a warning system to alert a lane change performed by surrounding vehicles to the front space of the host vehicle can be considered. If it is possible to forecast the intention of the interrupting vehicle in advance, the host driver can easily respond to the lane change with sufficient reaction time. This paper assumes a mandatory situation where two lanes are merged. The proposed method assesses the interaction between the lane-changing vehicle and the host vehicle on the mainstream lane. Then, the lane-change goal is estimated based on the interaction under the assumption that the lane-changing driver decides to minimize the collision risk. The proposed method applies the dynamic potential field method, which changes the distribution according to the relative speed and distance between two subject vehicles, to assess the interaction. The performance of goal estimation is evaluated using real traffic data, and it is demonstrated that the estimation can be successfully performed by the proposed method.


Author(s):  
Remya Murugesh ◽  
Ullas Ramanadhan ◽  
Nirmala Vasudevan ◽  
Alin Devassy ◽  
Dilip Krishnaswamy ◽  
...  

2021 ◽  
Author(s):  
Anish Dixit ◽  
Shreya Oak ◽  
Shaney Mantri ◽  
Anant Nimkar ◽  
Meghana Naik

Sign in / Sign up

Export Citation Format

Share Document