scholarly journals Goal Estimation of Mandatory Lane Changes Based on Interaction between Drivers

2020 ◽  
Vol 10 (9) ◽  
pp. 3289
Author(s):  
Hanwool Woo ◽  
Mizuki Sugimoto ◽  
Hirokazu Madokoro ◽  
Kazuhito Sato ◽  
Yusuke Tamura ◽  
...  

In this paper, we propose a novel method to estimate a goal of surround vehicles to perform a lane change at a merging section. Recently, autonomous driving and advance driver-assistance systems are attracting great attention as a solution to substitute human drivers and to decrease accident rates. For example, a warning system to alert a lane change performed by surrounding vehicles to the front space of the host vehicle can be considered. If it is possible to forecast the intention of the interrupting vehicle in advance, the host driver can easily respond to the lane change with sufficient reaction time. This paper assumes a mandatory situation where two lanes are merged. The proposed method assesses the interaction between the lane-changing vehicle and the host vehicle on the mainstream lane. Then, the lane-change goal is estimated based on the interaction under the assumption that the lane-changing driver decides to minimize the collision risk. The proposed method applies the dynamic potential field method, which changes the distribution according to the relative speed and distance between two subject vehicles, to assess the interaction. The performance of goal estimation is evaluated using real traffic data, and it is demonstrated that the estimation can be successfully performed by the proposed method.

Author(s):  
Yang-Jun Joo ◽  
Ho-Chul Park ◽  
Seung-Young Kho ◽  
Dong-Kyu Kim

Despite the urgent need for continuous risk assessments during autonomous driving, achieving reliable assessment results is still challenging because of the unpredictable behaviors of adjacent human drivers and the resulting complexity. Such complexity increases particularly during lane changes because several vehicles need to interact with other vehicles. Therefore, this paper proposes a new framework to analyze lane-changing risk on freeways considering the forecastability in adjacent vehicles. Virtual lane-change scenarios are constructed based on historical maneuvers in adjacent vehicles, and the risk of potential lane change is evaluated through the safety evaluation result of the scenario. Adjacent vehicles’ future maneuvers are predicted using a multivariate Bayesian structural time series model, and the forecastability is estimated as the standard error of the predicted values. The failure probability of those lane-changing scenarios is obtained through the first-order reliability method, assuming that failure occurred when any time-to-collision value for adjacent vehicles was less than a threshold at the end of the lane change. This study tested two scenarios with three levels of uncertainty to show the effect of uncertainty on the level of risk. The results showed that the reduced uncertainty allowed a clearer distinction between risky situations. The proposed framework differentiates itself from existing methods by estimating higher risk in an adjacent vehicle’s more significant uncertainties. It is expected that the outcome of this study will be valuable in developing reliable lane-change strategies in autonomous driving.


2020 ◽  
Vol 10 (5) ◽  
pp. 1626 ◽  
Author(s):  
Xiaodong Wu ◽  
Bangjun Qiao ◽  
Chengrui Su

A lane change is one of the most important driving scenarios for autonomous driving vehicles. This paper proposes a safe and comfort-oriented algorithm for an autonomous vehicle to perform lane changes on a straight and level road. A simplified Gray Prediction Model is designed to estimate the driving status of surrounding vehicles, and time-variant safety margins are employed during the trajectory planning to ensure a safe maneuver. The algorithm is able to adapt its lane changing strategy based on traffic situation and passenger demands, and features condition-triggered rerouting to handle unexpected traffic situations. The concept of dynamic safety margins with different settings of parameters gives a customizable feature for the autonomous lane changing control. The effect of the algorithm is verified within a self-developed traffic simulation system.


Author(s):  
Atsushi Yokoyama ◽  
Pongsathorn Raksincharoensak ◽  
Naoto Yoshikawa

Advanced Driver Assistance Systems (ADAS) and autonomous driving systems are being enhanced to deal with various types of collision avoidance use-case scenarios. To handle those complicated scenarios, a unified two-dimensional planar motion control methodology assuming virtual repulsive force from obstacles is introduced, which is physically interpretable and comprehensible. The direction and magnitude of virtual repulsive force are determined considering the orientation of obstacle surface planes and the friction limit between tires and road surface respectively. Applying the concept of virtual repulsive force field, the collision avoidance path can be derived from geometrical relationship and the control activation points can be obtained as algebraic solutions. By using a simple particle mass model, the formulation for path and control activation point is described. The simulation is conducted against not only in the case of a straight roadway but also in the case of a curve roadway. By designing feedforward and feedback controllers based on a two-wheel vehicle dynamics model, the effectiveness of the proposed method is verified and the feasibility of controller implementation for actual vehicle is also investigated.


2021 ◽  
Vol 69 (6) ◽  
pp. 511-523
Author(s):  
Henrietta Lengyel ◽  
Viktor Remeli ◽  
Zsolt Szalay

Abstract The emergence of new autonomous driving systems and functions – in particular, systems that base their decisions on the output of machine learning subsystems responsible for environment perception – brings a significant change in the risks to the safety and security of transportation. These kinds of Advanced Driver Assistance Systems are vulnerable to new types of malicious attacks, and their properties are often not well understood. This paper demonstrates the theoretical and practical possibility of deliberate physical adversarial attacks against deep learning perception systems in general, with a focus on safety-critical driver assistance applications such as traffic sign classification in particular. Our newly developed traffic sign stickers are different from other similar methods insofar that they require no special knowledge or precision in their creation and deployment, thus they present a realistic and severe threat to traffic safety and security. In this paper we preemptively point out the dangers and easily exploitable weaknesses that current and future systems are bound to face.


2020 ◽  
Vol 25 (3) ◽  
pp. 83-92
Author(s):  
Bong-Seo Park ◽  
Hyun-cheol Park ◽  
Jung-jun Her

With the development of advanced driver assistance systems, the more reliable the autonomous driving technology is, the more the rest and entertainment times of the driver of the car increases. Hence, the importance of the entertainment function of automotive audio-video navigation (AVN) systems is increasing. Currently, the AVN system of automobiles has a monitoring function for fault diagnosis and a combination of functions. Applying these technologies is challenging for drivers who want to tune the audio quality to their musical taste. In this study, a method for upgrading the sound quality using a power supply noise filter without deforming the AVN system was developed. The low-pass attenuation that appeared as a side effect was solved by applying a filter using the loudness isotropic curve. In the installation method of the filter, the method of using a fuse holder minimized the inconvenience of AVN detachment and wiring. Based on the results obtained in this study, further research and improvement of the filter are required for audio tuning of various models.


Author(s):  
Dongho Ka ◽  
Donghoun Lee ◽  
Sunghoon Kim ◽  
Hwasoo Yeo

One of the most widely used advanced driver assistance systems (ADAS) for preventing pedestrian–vehicle collisions is the intersection collision warning system (ICWS). Most previous ICWSs have been implemented with in-vehicle distance sensors, such as radar and lidar. However, the existing ICWSs show some weaknesses in alerting drivers at intersections because of limited detection range and field-of-view. Furthermore, these ICWSs have difficulties in identifying the pedestrian’s crossing intention because the distance sensors cannot capture pedestrian characteristics such as age, gender, and head orientation. To alleviate these defects, this study proposes a novel framework for vision sensor-based ICWS under a cloud-based communication environment, which is called the intersection pedestrian collision warning system (IPCWS). The IPCWS gives a collision warning to drivers approaching an intersection by predicting the pedestrian’s crossing intention based on various machine learning models. With real traffic data extracted by image processing in the IPCWS, a comparison study is conducted to evaluate the performance of the IPCWS in relation to warning timing. The comparison study demonstrates that the IPCWS shows better performance than conventional ICWSs. This result suggests that the proposed system has a great potential for preventing pedestrian–vehicle collisions by capturing the pedestrian’s crossing intention.


2015 ◽  
Vol 764-765 ◽  
pp. 1361-1365
Author(s):  
Cheng Yu Chiu ◽  
Chih Han Chang ◽  
Hsin Jung Lin ◽  
Tsong Liang Huang

This paper addressed a new lane departure warning system (LDWS). We used the side-view cameras to promote Advanced Driver Assistance Systems (ADAS). A left side-view camera detected the right lane next to vehicle, and a right side-view camera detected the right lane. Two cameras processed in their algorithm and gave warning message, independently and separately. Our algorithm combined those warning messages to analyze environment situations. At the end, we used the LUXGEN MPV to test and showed results of verifications and tests.


Author(s):  
Ishtiak Ahmed ◽  
Alan Karr ◽  
Nagui M. Rouphail ◽  
Gyounghoon Chun ◽  
Shams Tanvir

With the expected increase in the availability of trajectory-level information from connected and autonomous vehicles, issues of lane changing behavior that were difficult to assess with traditional freeway detection systems can now begin to be addressed. This study presents the development and application of a lane change detection algorithm that uses trajectory data from a low-cost GPS-equipped fleet, supplemented with digitized lane markings. The proposed algorithm minimizes the effect of GPS errors by constraining the temporal duration and lateral displacement of a lane change detected using preliminary lane positioning. The algorithm was applied to 637 naturalistic trajectories traversing a long weaving segment and validated through a series of controlled lane change experiments. Analysis of naturalistic trajectory data revealed that ramp-to-freeway trips had the highest number of discretionary lane changes in excess of 1 lane change/vehicle. Overall, excessive lane change rates were highest between the two middle freeway lanes at 0.86 lane changes/vehicle. These results indicate that extreme lane changing behavior may significantly contribute to the peak-hour congestion at the site. The average lateral speed during lane change was 2.7 fps, consistent with the literature, with several freeway–freeway and ramp–ramp trajectories showing speeds up to 7.7 fps. All ramp-to-freeway vehicles executed their first mandatory lane change within 62.5% of the total weaving length, although other weaving lane changes were spread over the entire segment. These findings can be useful for implementing strategies to lessen abrupt and excessive lane changes through better lane pre-positioning.


Sign in / Sign up

Export Citation Format

Share Document