Critical properties of the two-dimensional Ising model on a square lattice with competing interactions

2015 ◽  
Vol 476 ◽  
pp. 1-5 ◽  
Author(s):  
A.K. Murtazaev ◽  
M.K. Ramazanov ◽  
M.K. Badiev
Author(s):  
Kirill Tsiberkin ◽  

The paper presents a numerical analysis of equilibrium state and spin configuration of square lattice Ising model with competing interaction. The most detailed description is given for case of ferromagnetic interaction of the first-order neighbours and antiferromagnetic coupling of the second-order neighbours. The numerical method is based on Metropolis algorithm. It uses 128×128 lattice with periodic boundary conditions. At first, the simulation results show that the system is in saturation state at low temperatures, and it turns into paramagnetic state at the Curie point. The competing second-order interaction makes possible the domain structure realization. This state is metastable, because its energy is higher than saturation energy. The domains are small at low temperature, and their size increases when temperature is growing until the single domain occupies the whole simulation area. In addition, the antiferromagnetic coupling of the second-order neighbours reduces the Curie temperature of the system. If it is large enough, the lattice has no saturation state. It turns directly from the domain state into paramagnetic phase. There are no extra phases when the system is antiferromagnetic in main order, and only the Neel temperature shift realizes here.


2003 ◽  
Vol 14 (10) ◽  
pp. 1305-1320 ◽  
Author(s):  
BÜLENT KUTLU

The two-dimensional antiferromagnetic spin-1 Ising model with positive biquadratic interaction is simulated on a cellular automaton which based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transition of the model are presented for a comparison with those obtained from other calculations. We confirm the existence of the intermediate phase observed in previous works for some values of J/K and D/K. The values of the static critical exponents (β, γ and ν) are estimated within the framework of the finite-size scaling theory for D/K<2J/K. Although the results are compatible with the universal Ising critical behavior in the region of D/K<2J/K-4, the model does not exhibit any universal behavior in the interval 2J/K-4<D/K<2J/K.


1996 ◽  
Vol 07 (04) ◽  
pp. 609-612 ◽  
Author(s):  
R. HACKL ◽  
I. MORGENSTERN

In this article we will expose a connection between critical values of percolation and Ising model, i.e., the percolation threshold pc, and the critical temperature Tc and energy Ec, respectively, by the approximation [Formula: see text]. For the two-dimensional square lattice even the identity holds. For higher dimensions — up to d = 7 — and other lattice types we find remarkably small differences from one to five percent.


2009 ◽  
Vol 23 (20n21) ◽  
pp. 3951-3967 ◽  
Author(s):  
ANTHONY O'HARE ◽  
F. V. KUSMARTSEV ◽  
K. I. KUGEL

We study the two-dimensional Ising model with competing nearest-neighbour and diagonal interactions and investigate the phase diagram of this model. We show that the ground state at low temperatures is ordered either as stripes or as the Néel antiferromagnet. However, we also demonstrate that the energy of defects and dislocations in the lattice is close to the ground state of the system. Therefore, many locally stable (or metastable) states associated with local energy minima separated by energy barriers may appear forming a glass-like state. We discuss the results in connection with two physically different systems. First, we deal with planar clusters of loops including a Josephson π-junction (a π-rings). Each π-ring carries a persistent current and behaves as a classical orbital moment. The type of particular state associated with the orientation of orbital moments in the cluster depends on the interaction between these orbital moments and can be easily controlled, i.e. by a bias current or by other means. Second, we apply the model to the analysis of the structure of the newly discovered two-dimensional form of carbon, graphene. Carbon atoms in graphene form a planar honeycomb lattice. Actually, the graphene plane is not ideal but corrugated. The displacement of carbon atoms up and down from the plane can be also described in terms of Ising spins, the interaction of which determines the complicated shape of the corrugated graphene plane. The obtained results may be verified in experiments and are also applicable to adiabatic quantum computing where the states are switched adiabatically with the slow change of coupling constant.


2001 ◽  
Vol 12 (02) ◽  
pp. 257-271
Author(s):  
X.-N. LI ◽  
J. MACHTA

The dynamic critical behavior of the two-replica cluster algorithm is studied. Several versions of the algorithm are applied to the two-dimensional, square lattice Ising model with a staggered field. The dynamic exponent for the full algorithm is found to be less than 0.4. It is found that odd translations of one replica with respect to the other together with global flips are essential for obtaining a small value of the dynamic exponent.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Ling Wen ◽  
Yan Shi-Lei

AbstractWithin effective field theory (EFT), the critical properties of a random transverse crystal field Ising model with bond dilution are studied on a square lattice. Under both weak and strong bond dilution conditions, we consider three cases (α = 0,±0.5) of a transverse crystal field ratio, obtaining global phase diagrams in T−D x space for changes in the random transverse crystal field concentration. The phase diagrams obtained for a weak bond dilution are very similar in shape to those of pure bond but with decreases in corresponding ordered phases and critical values. However, the phase diagrams for a strong bond dilution exhibit varieties, including a change in reentrant phenomenon, the occurrence of transverse crystal field degeneration, and the opposite direction crossover of temperature peak value.


Sign in / Sign up

Export Citation Format

Share Document