Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

2018 ◽  
Vol 537 ◽  
pp. 277-282 ◽  
Author(s):  
Mahtab Ullah ◽  
Anwar Manzoor Rana ◽  
E. Ahmed ◽  
Abdul Sattar Malik ◽  
Z.A. Shah ◽  
...  
2016 ◽  
Vol 1136 ◽  
pp. 573-578 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

The present study reports the influence of graphene layers on the tribological performance of CVD diamond films when they are used as the solid lubricants. Friction tests are conducted on a ball-on-plate friction tester, where the stainless steel is used as the counterpart material. The CVD diamond film sample is a typical microcrystalline diamond (MCD) coating which is deposited on a flat tungsten carbide substrate using the hot filament chemical vapor deposition method (HFCVD). Besides the MCD sample, a polished MCD film (pMCD) and a polished tungsten carbide (pWC) are also adopted in frictional tests, aiming at illustrating the influence of the surface morphology, as well as the physical property, of the sample on the lubricative effect of graphene layers. The experimental results show that graphene layers can effectively reduce the coefficient of friction (COF), regardless of the samples. The MCD sample presents the lowest stable COF, which is 0.13, in dry sliding period when the graphene flakes are sparyed on the sliding interface; while the pMCD and pWC samples exhibit slightly higher COFs, which are 0.16 and 0.18, respectively. Comparatively, the COFs of these three samples obtained in dry sliding process without graphene are 0.20, 0.25 and 0.64. In additon, the MCD sample exhibits a much longer stable dry slidng process which is more than 5000 cycles. Comparatively, the other two tribo-pairs only exhibit a stable low-COF dry sliding period for around 2000 cycles. The reduction of COF could be attributed to the graphene flakes adhered on the sliding interface. It forms a layer of solid lubricative film with extremely low shear strength and significantly decreases the interactions between two contacted surfaces. The rugged surface of the MCD film provides sufficient clogging locations for graphene flakes, which allows the generated lubricative film enduring a long sliding duration. It can be arrived from this study that the tribological properties of the MCD film could be enhanced by simply adoping graphene layers as a solid lubricant. Furthermore, an improved performance of a variety of MCD coated cutting tools or mechanical components could be expected when they are utilized with graphene layers.


Author(s):  
A. Göhl ◽  
T. Habermann ◽  
D. Nau ◽  
G. Müller ◽  
V. Raiko ◽  
...  

1989 ◽  
Vol 162 ◽  
Author(s):  
Sacharia Albin ◽  
Linwood Watkins

ABSTRACTCurrent-voltage characteristics of type Ia synthetic diamond, type IIb natural diamond and free-standing diamond films were measured before and after hydrogenation. The diamond films were polycrystalline, deposited on sacrificial silicon substrates using a microwave chemical vapor deposition process. On hydrogenation, all the samples showed several orders of magnitude increase in conductivity. Hydrogenation was carried out under controlled conditions to study the changes in the I-V characteristics of the samples. The concentration of electrically active hydrogen was determined from the I-V data. Hydrogen passivation of deep traps in diamond is clearly demonstrated.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2124 ◽  
Author(s):  
Monika Kosowska ◽  
Daria Majchrowicz ◽  
Kamatchi J. Sankaran ◽  
Mateusz Ficek ◽  
Ken Haenen ◽  
...  

This paper reports the application of doped nanocrystalline diamond (NCD) films—nitrogen-doped NCD and boron-doped NCD—as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry–Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition system. The measurements of refractive indices of liquids were carried out in the range of 1.3 to 1.6. The results of initial investigations show that doped NCD films can be successfully used in fiber-optic sensors of refractive index providing linear work characteristics. Their application can prolong the lifespan of the measurement head and open the way to measure biomedical samples and aggressive chemicals.


1996 ◽  
Vol 423 ◽  
Author(s):  
Dong-Gu Lee ◽  
Rajiv K. Singh

AbstractWe have developed a method for <111> oriented diamond film synthesis using micron-sized diamond particles. Different size of diamond powders were electrophoretically seeded on silicon substrates using diamond suspensions in organic solvents (acetone, methanol, and ethanol). Diamond suspension in acetone was found to be the best for obtaining uniform diamond seeding by electrophoresis. The thickness of diamond seeded films was changed by varying the applied voltage to observe the effect on the orientation of diamond particles. Then diamond films were deposited by the hot filament chemical vapor deposition (HFCVD) process. A preferred orientation with <111> direction normal to the substrate was obtained for monolayer coatings. The surface morphology, crystal orientation, and quality of diamond films were investigated using scanning electron microscopy, x-ray diffractometry, and Raman spectroscopy.


1996 ◽  
Vol 12 (1) ◽  
pp. 1-6 ◽  
Author(s):  
N. Xu ◽  
Z. H. Zheng

1997 ◽  
Vol 12 (10) ◽  
pp. 2686-2698 ◽  
Author(s):  
L. Fayette ◽  
B. Marcus ◽  
M. Mermoux ◽  
N. Rosman ◽  
L. Abello ◽  
...  

A sequential analysis of the growth of diamond films on silicon substrates in a microwave plasma assisted chemical vapor deposition (CVD) reactor has been performed by Raman spectroscopy. The plasma was switched off during measurements, but the substrate heating was maintained to minimize thermoelastic stresses. The detectivity of the present experimental setup has been estimated to be about a few tens of μmg/cm2. From such a technique, one expects to analyze different aspects of diamond growth on a non-diamond substrate. The evolution of the signals arising from the substrate shows that the scratching treatment used to increase the nucleation density induces an amorphization of the silicon surface. This surface is annealed during the first step of deposition. The evolution of the line shape of the spectra indicates that the non-diamond phases are mainly located in the grain boundaries. The variation of the integrated intensity of the Raman signals has been interpreted using a simple absorption model. A special emphasis was given to the evolution of internal stresses during deposition. It was verified that compressive stresses were generated when coalescence of crystals took place.


2012 ◽  
Vol 111 (12) ◽  
pp. 124328 ◽  
Author(s):  
Yueh-Chieh Chu ◽  
Chia-Hao Tu ◽  
Gerald Jiang ◽  
Chi Chang ◽  
Chuan-pu Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document