scholarly journals Size-dependent phononic thermal transport in low-dimensional nanomaterials

2020 ◽  
Vol 860 ◽  
pp. 1-26 ◽  
Author(s):  
Zhongwei Zhang ◽  
Yulou Ouyang ◽  
Yuan Cheng ◽  
Jie Chen ◽  
Nianbei Li ◽  
...  
2001 ◽  
Vol 703 ◽  
Author(s):  
Ho-Soon Yang ◽  
J.A. Eastman ◽  
L.J. Thompson ◽  
G.-R. Bai

ABSTRACTUnderstanding the role of grain boundaries in controlling heat flow is critical to the success of many envisioned applications of nanocrystalline materials. This study focuses on the effect of grain boundaries on thermal transport behavior in nanocrystalline yttria-stabilized zirconia (YSZ) coatings prepared by metal-organic chemical vapor deposition.


2019 ◽  
Vol 115 (12) ◽  
pp. 123105 ◽  
Author(s):  
Ji-Hang Zou ◽  
Xin-Tong Xu ◽  
Bing-Yang Cao

2009 ◽  
Vol 1209 ◽  
Author(s):  
Shiva Hullavarad ◽  
Nilima Hullavarad

AbstractNanoparticles, nanowires, nanorods and other kinds of nanostructures have been of great interest to scientific field. Semiconducting nanowires have attracted much attention due to the fact that reduced dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale optoelectronic devices, highly quantum efficient lasers and non-linear optical converters. It is generally accepted that the low dimensional structures (where the size in one direction is equivalent to or smaller than the de Broglie wavelength) are useful materials for investigating the dependence of electrical and thermal transport or mechanical properties on the dimensionality and quantum confinement. Nanomaterials also play an important role as functional units in fabricating the electromechanical devices. Semiconductor nanostructures of different materials and shapes are investigated due to their size dependent electronic properties observable at dimensions comparable to or less than Bohr radius of exciton in these materials. Especially various oxides and sulphides have generated interests in variety of applications. In this paper, the recent progress in various nanostructures, paradigms in implementation and technology hurdles in implementing nanostructures are discussed


Nanoscale ◽  
2020 ◽  
Vol 12 (16) ◽  
pp. 9231-9239 ◽  
Author(s):  
Xiaolin Xiao ◽  
Ye Li ◽  
Rong-Jun Xie

Low dimensional semiconductor nanomaterials show great promise for a variety of applications due to their size-dependent and excellent optoelectronic properties.


Author(s):  
Hao Wu ◽  
Rong Yu ◽  
Jing Zhu ◽  
Wei Chen ◽  
Yadong Li ◽  
...  

Multiple twinned structures are common in low-dimensional materials. They are intrinsically strained due to the geometrical constraint imposed by the non-crystallographic fivefold symmetry. In this study, the strain distributions in sub-10 nm fivefold twins of gold have been analyzed by combining aberration-corrected transmission electron microscopy and first-principles calculations. Bending of atomic planes has been measured by both experiments and calculations, and its contribution to the filling of the angular gap was shown to be size-dependent.


Sign in / Sign up

Export Citation Format

Share Document