The role of extravillous trophoblasts in maternal-fetal tolerance and immunity to infection

Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e22
Author(s):  
T.A.M.A.R.A. TILBURGS
2019 ◽  
Vol 20 (9) ◽  
pp. 2342 ◽  
Author(s):  
Akitoshi Nakashima ◽  
Sayaka Tsuda ◽  
Tae Kusabiraki ◽  
Aiko Aoki ◽  
Akemi Ushijima ◽  
...  

Autophagy is an evolutionarily conserved process in eukaryotes to maintain cellular homeostasis under environmental stress. Intracellular control is exerted to produce energy or maintain intracellular protein quality controls. Autophagy plays an important role in embryogenesis, implantation, and maintenance of pregnancy. This role includes supporting extravillous trophoblasts (EVTs) that invade the decidua (endometrium) until the first third of uterine myometrium and migrate along the lumina of spiral arterioles under hypoxic and low-nutrient conditions in early pregnancy. In addition, autophagy inhibition has been linked to poor placentation—a feature of preeclamptic placentas—in a placenta-specific autophagy knockout mouse model. Studies of autophagy in human placentas have revealed controversial results, especially with regard to preeclampsia and gestational diabetes mellitus (GDM). Without precise estimation of autophagy flux, wrong interpretation would lead to fixed tissues. This paper presents a review of the role of autophagy in pregnancy and elaborates on the interpretation of autophagy in human placental tissues.


Reproduction ◽  
2015 ◽  
Vol 150 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Qian Zhang ◽  
Song Yu ◽  
Xing Huang ◽  
Yi Tan ◽  
Cheng Zhu ◽  
...  

Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1908-1920 ◽  
Author(s):  
Gudrun Meinhardt ◽  
Sandra Haider ◽  
Peter Haslinger ◽  
Katharina Proestling ◽  
Christian Fiala ◽  
...  

Formation of migratory extravillous trophoblasts (EVTs) is critical for human placentation and hence embryonic development. However, key regulatory growth factors, hormones, and nuclear proteins controlling the particular differentiation process remain poorly understood. Here, the role of the Wingless (Wnt)-dependent transcription factor T-cell factor-4 (TCF-4) in proliferation and motility was investigated using different trophoblast cell models. Immunofluorescence of first-trimester placental tissues revealed induction of TCF-4 and nuclear recruitment of its coactivator β-catenin in nonproliferating EVTs, whereas membrane-associated β-catenin decreased upon differentiation. In addition, EVTs expressed the TCF-4/β-catenin coactivator Pygopus 2 as well as repressors of the Groucho/transducin-like enhancer of split family. Western blotting revealed Pygopus 2 expression and up-regulation of integrin α1 and nuclear TCF-4 in purified first-trimester cytotrophoblasts (CTBs) differentiating on fibronectin. Concomitantly, elevated TCF-4 mRNA, quantitated by real-time PCR, and increased TCF-dependent luciferase reporter activity were noticed in EVTs of villous explant cultures and differentiated primary CTBs. Gene silencing using specific small interfering RNA decreased TCF-4 transcript and protein levels, TCF-dependent reporter activity as well as basal and Wnt3a-stimulated migration of trophoblastic SGHPL-5 cells and primary CTBs through fibronectin-coated transwells. In contrast, proliferation of SGHPL-5 cells and primary cells, measured by cumulative cell numbers and 5-bromo-2′-deoxy-uridine labeling, respectively, was not affected. Moreover, siRNA-mediated down-regulation of TCF-4 in primary CTBs diminished markers of the differentiated EVT, such as integrin α1 and α5, Snail1, and Notch2. In summary, the data suggest that Wnt/TCF-4-dependent signaling could play a role in EVT differentiation promoting motility and expression of promigratory genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sylvie Bouvier ◽  
Elise Kaspi ◽  
Ahmad Joshkon ◽  
Odile Paulmyer-Lacroix ◽  
Marie-Dominique Piercecchi-Marti ◽  
...  

CD146 is an adhesion molecule essentially located in the vascular system, which has been described to play an important role in angiogenesis. A soluble form of CD146, called sCD146, is detected in the bloodstream and is known as an angiogenic factor. During placental development, CD146 is selectively expressed in extravillous trophoblasts. A growing body of evidence shows that CD146 and, in particular, sCD146, regulate extravillous trophoblasts migration and invasion both in vitro and in vivo. Hereby, we review expression and functions of CD146/sCD146 in the obstetrical field, mainly in pregnancy and in embryo implantation. We emphasized the relevance of quantifying sCD146 in the plasma of pregnant women or in embryo supernatant in the case of in vitro fertilization (IVF) to predict pathological pregnancy such as preeclampsia or implantation defect. This review will also shed light on some major results that led us to define CD146/sCD146 as a biomarker of placental development and paves the way toward identification of new therapeutic targets during implantation and pregnancy.


Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4386-4394 ◽  
Author(s):  
Yukio Mano ◽  
Tomomi Kotani ◽  
Kiyozumi Shibata ◽  
Hiroko Matsumura ◽  
Hiroyuki Tsuda ◽  
...  

Endoglin is a coreceptor for TGF-β, which is expressed in syncytiotrophoblasts. The soluble form of endoglin (sEng) has been observed to increase in the serum of preeclamptic patients. Several studies have shown that endoglin is involved in cancer invasion. However, the role of endoglin in extravillous trophoblasts (EVT), which have an invasive phenotype, remains unknown. The present study was designed to investigate the expression and role of endoglin in human EVT. We found that endoglin was mainly expressed on cytotrophoblasts within the cell column during the first trimester and its expression decreased in the EVT by immunohistochemistry and immunocytochemistry. The expression of endoglin significantly increased after treatment with TGF-β1 and TGF-β3 in the human EVT cell line, HTR-8/SVneo, as detected by semiquantitative RT-PCR. To investigate the role of endoglin in EVT, the stable knockdown of endoglin was performed by lentiviral short hairpin RNA transfection into the HTR-8/SVneo cells. Although proliferation was not affected, the motility and invasiveness of the HTR-8/SVneo cells significantly increased by the knockdown of endoglin. Both the mRNA expression and secretion of urokinase-type plasminogen activator significantly increased in endoglin knockdown cells. The secretion of sEng was very low in HTR-8/SVneo, and the treatment of endoglin knockdown cells with 10 ng/ml sEng had no effect on their invasiveness. Therefore, the suppression of sEng was not involved in the increased invasiveness of endoglin knockdown cells. These results suggested that EVT increased their invasive function as a result of decreasing expression of transmembrane endoglin.


2019 ◽  
Vol 25 ◽  
pp. 9630-9636 ◽  
Author(s):  
Yingli Ji ◽  
La Zhou ◽  
Guijuan Wang ◽  
Yanni Qiao ◽  
Yuyu Tian ◽  
...  

Reproduction ◽  
2014 ◽  
Vol 148 (4) ◽  
pp. 343-352 ◽  
Author(s):  
Wen-Lin Chang ◽  
Qing Yang ◽  
Hui Zhang ◽  
Hai-Yan Lin ◽  
Zhi Zhou ◽  
...  

Placenta-specific protein 1 (PLAC1), a placenta-specific gene, is known to be involved in the development of placenta in both humans and mice. However, the precise role of PLAC1 in placental trophoblast function remains unclear. In this study, the localization of PLAC1 in human placental tissues and its physiological significance in trophoblast invasion and migration are investigated by technical studies including real-time RT-PCR, in situ hybridization, immunohistochemistry, and functional studies by utilizing cell invasion and migration assays in the trophoblast cell line HTR8/SVneo as well as the primary inducing extravillous trophoblasts (EVTs). The results show that PLAC1 is mainly detected in the trophoblast columns and syncytiotrophoblast of the first-trimester human placental villi, as well as in the EVTs that invade into the maternal decidua. Knockdown of PLAC1 by RNA interference significantly suppresses the invasion and migration of HTR8/SVneo cells and shortens the distance of the outgrowth of the induced EVTs from the cytotrophoblast column of the explants. All the above data suggests that PLAC1 plays an important role in human placental trophoblast invasion and migration.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Kenneth F. Swan ◽  
Gabriella Pridjian ◽  
Thomas Swayze ◽  
Brennan R. Gagen ◽  
Suttira Intapad

Sign in / Sign up

Export Citation Format

Share Document