Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis

Plant Science ◽  
2005 ◽  
Vol 168 (6) ◽  
pp. 1471-1476 ◽  
Author(s):  
Xiaogang Wen ◽  
Hongmei Gong ◽  
Congming Lu
1979 ◽  
Vol 34 (11) ◽  
pp. 1010-1014 ◽  
Author(s):  
Gernot Renger

Abstract Based on the functional organization scheme of system-II-electron transport and its modification by different procedures a proteinaceous component enwrapping the redox components (plastoquinone molecules) of the acceptor side (thereby acting as regulatory element) is inferred to be the unique target for herbicidal interaction with system II. This proteinaceous component, which is attacked by trypsin, provides the receptor sites for the herbicides. Studies of the release kinetics in trypsinated chloroplasts of the inhibition of oxygen evolution with K3 [Fe (CN)6] as electron acceptor indicates, that there exists a binding area with different specific subreceptor sites rather than a unique binding site for the various types of inhibitors. Furthermore, trypsination of the proteinaceous component enhances the efficiency of the plastoquinone pool to act as a non-photochemical quencher for excitation energy.


1999 ◽  
Vol 26 (3) ◽  
pp. 283 ◽  
Author(s):  
Congming Lu ◽  
Giuseppe Torzillo ◽  
Avigad Vonshak

The kinetic response of photosystem II (PS II) photochemistry in Spirulina platensis(Norstedt M2 ) to high salinity (0.75 M NaCl) was found to consist of two phases. The first phase, which was independent of light, was characterized by a rapid decrease (15–50%) in the maximal efficiency of PS II photochemistry (Fv /Fm), the efficiency of excitation energy capture by open PS II reaction centres (Fv′/Fm′), photochemical quenching (qp) and the quantum yield of PS II electron transport (Φ PS II) in the first 15 min, followed by a recovery up to about 80–92% of their initial levels within the next 2 h. The second phase took place after 4 h, in which further decline in above parameters occurred. Such a decline occurred only when the cells were incubated in the light, reaching levels as low as 45–70% of their initial levels after 12 h. At the same time, non-photochemical quenching (qN) and Q B -non-reducing PS II reaction centres increased significantly in the first 15 min and then recovered to the initial level during the first phase but increased again in the light in the second phase. The changes in the probability of electron transfer beyond QA (ψo) and the yield of electron transport beyond QA (φ Eo), the absorption flux (ABS/RC) and the trapping flux (TRo /RC) per PS II reaction centre also displayed two different phases. The causes responsible for the decreased quantum yield of PS II electron transport during the two phases are discussed.


Botany ◽  
2008 ◽  
Vol 86 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Luca Vitale ◽  
Carmen Arena ◽  
Amalia Virzo De Santo ◽  
Nicola D’Ambrosio

Gas exchange and chlorophyll a fluorescence measurements were performed simultaneously on leaves of Phillyrea angustifolia L. to assess the effects of heat stress (30 min at 40 °C) on photosynthesis and photosystem II (PSII) photochemical efficiency of plants grown at ambient CO2 and exposed to an elevated CO2 concentration (800 µmol·mol–1) and 300 µmol photons·m–2·s–1. No significant difference was found in the heat-induced decreases of net photosynthesis (PN), quantum yield of PSII electron transport (ΦPSII), and maximum PSII photochemical efficiency (Fv/Fm) between plants exposed to ambient and elevated CO2 concentrations, showing that elevated CO2 was not able to reduce the potential for photoinhibition at high temperatures under moderate light conditions. The heat-induced decrease of PN was higher than that of ΦPSII indicating that reductive power was more utilized in non-assimilatory processes than in CO2 fixation at both CO2 treatments. This result suggested that impairment of the Calvin cycle rather than electron transport inhibition was the main cause of the limitation in CO2 fixation.


1998 ◽  
Vol 53 (3-4) ◽  
pp. 159-162
Author(s):  
Manoj K. Joshi ◽  
T. S. Desai ◽  
Prasanna Mohanty

Abstract It has been demonstrated that cyclic polyether, K -picrate-18-crown-6 inhibited photosyn­ thetic electron transport (Sabat et al., 1991, Z. Naturforsch. 46c , 87-92) . We further analyzed the alterations induced in the fast chlorophyll a fluorescence and thermoluminescence pattern of pea thylakoids by calcium-18-crown-6 (crown-picrate). The results indicate that the site of action of calcium crown-picrate is at the acceptor side of photosystem II.


1998 ◽  
Vol 116 (1) ◽  
pp. 439-444 ◽  
Author(s):  
Scott A. Heckathorn ◽  
Craig A. Downs ◽  
Thomas D. Sharkey ◽  
James S. Coleman

Sign in / Sign up

Export Citation Format

Share Document