Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose

1996 ◽  
Vol 34 (2-3) ◽  
pp. 149-157 ◽  
Author(s):  
S.I. Allakhverdiev ◽  
Ya.M. Feyziev ◽  
A. Ahmed ◽  
H. Hayashi ◽  
Ja.A. Aliev ◽  
...  
1975 ◽  
Vol 30 (7-8) ◽  
pp. 489-498 ◽  
Author(s):  
Christian Holzapfel ◽  
Robert Bauer

Abstract A computer model describing the “Z-scheme” of photosynthetic electron transport in terms of reduction and oxydation of coupled redox pools was built up. Starting from a certain initial state corresponding to the dark adapted state of the photosynthetic system the reduction and reoxidation levels of the pools were calculated during adaptation of the system to a steady state in the light. The changes of calculated redox levels were compared with experimental results of fluorescence and oxygen evolution induction curves. It is shown that the transients in prompt fluorescence and oxygen evolution can be described by reduction and reoxidation of the primary electron acceptor pool and the electron donor pool of photosystem II due to reduction and oxidation of the other pools during adaptation to light. The first depression D in the fluorescence induction curve is explained by the existence of a redox pool X between the primary electron acceptor pool Q of photosystem II and plastoquinone. It is shown that DCMU blocks the electron flow between Q and X. Furthermore, it is shown that the inhibitor DBMIB probably not only blocks the electron flow but also causes a successive disconnection of the plastoquinone pool from the electron transport chain.


1994 ◽  
Vol 72 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Ernesto Bernal-Morales ◽  
Alfonso Romo De Vivar ◽  
Bertha Sanchez ◽  
Martha Aguilar ◽  
Blas Lotina-Hennsen

The inhibition of ATP synthesis, proton uptake, and electron transport (basal, phosphorylating, and uncoupled) from water to methylviologen by ivalin (a naturally occurring sesquiterpene lactone in Zaluzania triloba and Iva microcephala) indicates that it acts as electron transport inhibitor. Since photosystem I and electron transport from DPC to QA were not affected, while the electron flow of uncoupled photosystem II from H2O to DAD and from water to silicomolybdate was inhibited, we concluded that the site of inhibition of ivalin is located at the oxygen evolution level. Key words: oxygen evolution, ivalin, photosynthesis, sesquiterpene lactone.


1979 ◽  
Vol 34 (11) ◽  
pp. 1021-1023 ◽  
Author(s):  
J. J. S. van Rensen ◽  
J. H. Hobé

Abstract The herbicide 4,6-dinitro-o-cresol inhibits electron transport to ferricyanide and non-cyclic photophosphorylation for 50% at about 15 μm. At higher concentrations the photosystem I depen­dent Mehler reaction ascorbate/dichlorophenolindophenol to methyl viologen is stimulated, while cyclic photophosphorylation is inhibited. The herbicide thus is an inhibitory uncoupler. Although the chemical structure of 4,6-dinitro-o-cresol is different from that of the diuron-type herbicides, its site and mechanism of action is similar. Both 4,6-dinitro-o-cresol and diuron inhibit electron transport between the primary electron acceptor of Photosystem II and the plastoquinone pool. This causes a closing of the reaction centers of Photosystem II. The interaction with the inhibited molecule however is different for the two herbicides.


1996 ◽  
Vol 51 (1-2) ◽  
pp. 47-52 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałk ◽  
K.P. Bader ◽  
A. Radunz ◽  
G.H. Schmid

Abstract In our previous study (Gruszecki et al., 1995) we have postulated that the mechanism of cyclic electron transport around photosystem II, active under overexcitation of the photosynthetic apparatus by light is under control of the xanthophyll cycle. The combination of dif­ferent light quality and thylakoids having various levels of xanthophyll cycle pigments were applied to support this hypothesis. In the present work photosynthetic oxygen evolution from isolated tobacco chloroplasts was measured by means of mass spectrometry under conditions of high or low levels of violaxanthin, being transformed to zeaxanthin during dark incubation in an ascorbate containing buffer at pH 5.7. Analysis of oxygen evolution and of light-induced oxygen uptake indicate that the de-epoxidation of violaxanthin to zeaxanthin results in an increased cyclic electron transport around PS II, thus dimishing the vectorial electron flow from water. An effect similar to de-epoxidation was observed after incubation of thylakoid membranes with specific antibodies against violaxanthin.


1982 ◽  
Vol 60 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Rungsit Suwanketnikom ◽  
Kriton K. Hatzios ◽  
Donald Penner ◽  
Duncan Bell

The effect of bentazon (3-isopropyl-1H-2,1,3-benzathiadiazin-(4)3H-one 2,2-dioxide) on various photochemical reactions of isolated spinach (Spinacea oleracea L.) chloroplasts was studied at concentrations 0, 5, 15, 45, and 135 μM. Bentazon at a concentration of 135 μM strongly inhibited uncoupled electron transport from water to ferricyanide or to methylviologen with inhibition percentages greater than 90%. Photosystem II mediated electron transport from water to oxidized diaminodurene, with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) blocking photosystem I, was also strongly inhibited by bentazon at 135 μM but less with lower concentrations of bentazon. Photosystem I mediated transfer of electrons from diaminodurene to methylviologen, with 3,4-dichlorophenyl-1,1-dimethylurea (DCMU) blocking photosystem II, was not inhibited by bentazon at any concentration examined. Transfer of electrons from catechol to methylviologen in hydroxylamine-treated chloroplasts was inhibited by bentazon, and the inhibition percentages were again concentration dependent. The data indicate that the site of bentazon inhibition of the photosynthetic electron transport is at the reducing side of photosystem II, between the primary electron acceptor Q and plastoquinone.


1974 ◽  
Vol 29 (11-12) ◽  
pp. 725-732 ◽  
Author(s):  
Robert Bauer ◽  
Mathijs J. G. Wijnands

Abstract The effect of the plastohydroquinone antagonist dibromothym oquinone (DBMIB) on photosynthetic electron transport reactions was studied in the presence and absence of p-phenylene-diamines by means of measurements of prompt and delayed chlorophyll fluorescence induction of the green alga Scenedesm us obliquus. Prompt and delayed chlorophyll fluorescence induction phenomena are valid indicators for the native presence of and cooperation between the two photosynthetic light reactions. Their kinetics reflect the balancing of electron exchange reactions in the chain of coupled redox-systems between the two photosystems upon sudden illumination. From distinct alterations of the short-term (sec) light induced changes in the yield of prom pt and delayed chlorophyll fluorescence it is concluded that DBMIB inhibits the photosynthetic electron transport in the chain of redox-systems between the two light reactions. There is evidence to show that upon illumination of DBMIB treated cells only the reduction of primary electron ac­ceptor pools of photosystem II (i. e. Q and PQ) is still possible. After their reduction the further electron transport through photosystem II is blocked. The addition of p-phenylenediamines to DBM IB-treated cells abolishes the typical DBMIB-affected prom pt and delayed fluorescence inhibition curves and the normal induction curves re­ appear qualitatively in all their important features. From these measurements it is suggested that the redox properties of p-phenylenediamines allow an electron transport bypass of the DBMIB inhibition site which results in a fully restored photosynthetic electron transport from water to NADP.


Weed Science ◽  
1979 ◽  
Vol 27 (3) ◽  
pp. 300-308 ◽  
Author(s):  
P. E. Brewer ◽  
C. J. Arntzen ◽  
F. W. Slife

The effects of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazin-2-yl] amino]-2-methylpropionitrile}, and procyazine {2-[[4-chloro-6-(cyclopropylamino)-1,3,5-triazine-2-yl] amino]-2-methylpropanenitrile} on the photochemical reactions of isolated pea (Pisum sativum L. ‘Progress #9 Dwarf’) chloroplasts were studied. Atrazine, cyanazine, and procyazine inhibited electron transport but did not uncouple photophosphorylation. The primary site of inhibition for all three herbicides was on the reducing side of photosystem II; the electron transfer step between the primary electron acceptor (Q) and the plastoquinone pool of the electron transport chain is suggested as the site of action of all three herbicides. The amount of inhibition of electron transport observed after addition of herbicide to isolated chloroplasts was time-dependent for cyanazine and procyazine but not for atrazine. This was apparently due to a slower partitioning of cyanazine and procyazine from the aqueous phase of the reaction solution into the highly hydrophobic environment within the chloroplast membrane. Treatment of the thylakoid membranes with detergent reduced the time-dependent inhibitory nature of cyanazine and procyazine, and the ability of atrazine to block electron transport. A photosystem II-dependent electron transport assay and a chlorophyll fluorescence induction assay were used to determine the inhibitory potentials of atrazine, cyanazine, and procyazine. After allowing for differences in the rate of membrane penetration, I50 values of approximately 2 × 10−7 M were determined for each of the three herbicides.


Botany ◽  
2008 ◽  
Vol 86 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Luca Vitale ◽  
Carmen Arena ◽  
Amalia Virzo De Santo ◽  
Nicola D’Ambrosio

Gas exchange and chlorophyll a fluorescence measurements were performed simultaneously on leaves of Phillyrea angustifolia L. to assess the effects of heat stress (30 min at 40 °C) on photosynthesis and photosystem II (PSII) photochemical efficiency of plants grown at ambient CO2 and exposed to an elevated CO2 concentration (800 µmol·mol–1) and 300 µmol photons·m–2·s–1. No significant difference was found in the heat-induced decreases of net photosynthesis (PN), quantum yield of PSII electron transport (ΦPSII), and maximum PSII photochemical efficiency (Fv/Fm) between plants exposed to ambient and elevated CO2 concentrations, showing that elevated CO2 was not able to reduce the potential for photoinhibition at high temperatures under moderate light conditions. The heat-induced decrease of PN was higher than that of ΦPSII indicating that reductive power was more utilized in non-assimilatory processes than in CO2 fixation at both CO2 treatments. This result suggested that impairment of the Calvin cycle rather than electron transport inhibition was the main cause of the limitation in CO2 fixation.


Sign in / Sign up

Export Citation Format

Share Document