Acceleration of cyclic electron flow in rice plants ( Oryza sativa L.) deficient in the PsbS protein of Photosystem II

2014 ◽  
Vol 84 ◽  
pp. 233-239 ◽  
Author(s):  
Ismayil S. Zulfugarov ◽  
Altanzaya Tovuu ◽  
Choon-Hwan Lee
Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 401
Author(s):  
Minh Khiem Nguyen ◽  
Tin-Han Shih ◽  
Szu-Hsien Lin ◽  
Jun-Wei Lin ◽  
Hoang Chinh Nguyen ◽  
...  

Photosynthesis is an essential biological process and a key approach for raising crop yield. However, photosynthesis in rice is not fully investigated. This study reported the photosynthetic properties and transcriptomic profiles of chlorophyll (Chl) b-deficient mutant (ch11) and wild-type rice (Oryza sativa L.). Chl b-deficient rice revealed irregular chloroplast development (indistinct membranes, loss of starch granules, thinner grana, and numerous plastoglobuli). Next-generation sequencing approach application revealed that the differential expressed genes were related to photosynthesis machinery, Chl-biosynthesis, and degradation pathway in ch11. Two genes encoding PsbR (PSII core protein), FtsZ1, and PetH genes, were found to be down-regulated. The expression of the FtsZ1 and PetH genes resulted in disrupted chloroplast cell division and electron flow, respectively, consequently reducing Chl accumulation and the photosynthetic capacity of Chl b-deficient rice. Furthermore, this study found the up-regulated expression of the GluRS gene, whereas the POR gene was down-regulated in the Chl biosynthesis and degradation pathways. The results obtained from RT-qPCR analyses were generally consistent with those of transcription analysis, with the exception of the finding that MgCH genes were up-regulated which enhance the important intermediate products in the Mg branch of Chl biosynthesis. These results indicate a reduction in the accumulation of both Chl a and Chl b. This study suggested that a decline in Chl accumulation is caused by irregular chloroplast formation and down-regulation of POR genes; and Chl b might be degraded via the pheophorbide b pathway, which requires further elucidation.


1992 ◽  
Vol 61 (4) ◽  
pp. 629-634
Author(s):  
Jiro HARADA ◽  
Noriyuki TANAKA ◽  
Susumu ARIMA ◽  
Seizaburo SAKAI

2008 ◽  
Vol 58 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Sohei Kobayashi ◽  
Yoshimichi Fukuta ◽  
Hiroshi Takeda ◽  
Tadashi Sato ◽  
Mitsuru Osaki

Chemosphere ◽  
2021 ◽  
Vol 264 ◽  
pp. 128417 ◽  
Author(s):  
Kang Wang ◽  
Yaqi Wang ◽  
Yanan Wan ◽  
Zidong Mi ◽  
Qiqi Wang ◽  
...  

1984 ◽  
Vol 39 (5) ◽  
pp. 351-353 ◽  
Author(s):  
Stuart M. Ridley ◽  
Peter Horton

Diuron (DCMU) induces the photodestruction of pigments, which is the initial herbicidal symptom. As a working hypothesis, it is proposed that this symptom can only be produced when the herbicide dose is sufficiently high to inhibit not only photosystem II electron transport almost completely, but also inhibit (through over oxidation) the natural cyclic electron flow associated with photosystem I as well. Using freshly prepared chloroplasts, studies of DCMU-induced fluorescence changes, and dose responses for inhibition of electron transport, have been compared with a dose response for the photodestruction of pigments in chloroplasts during 24 h illumination. Photodestruction of pigments coincides with the inhibition of cyclic flow.


1997 ◽  
Vol 52 (3-4) ◽  
pp. 175-179 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałka ◽  
A. Radunz ◽  
G. H. Schmid

Abstract Photosynthetic oxygen evolution from photosystem II particles was analyzed as consequence of a train of short (5 μs) flashes of different light quality and different intensities to study cyclic electron flow around photosystem II. Damped oscillations of the amplitudes of O2-evolution corresponding to a flash sequence were fitted numerically and analyzed in terms of a nonhomogeneous distribution of misses, represented by the probability parameter αi. Application of red light, known to promote cyclic electron flow around photosystem II (Gruszecki et al., 1995) results in a considerable increase of all αi, indicating that at the molecular level the misses may be interpreted as resulting from a competition for the reduction of oxidized P680 between cyclic electron flow and the electron flow coming from the water splitting enzyme. In accordance with previous findings, application of light flashes of the spectrum covering the absorption region of carotenoids resulted in an inhibition of cyclic electron flow and a pronounced decrease of the level of the miss parameter. Possible molecular mechanisms for the activity control of this cyclic electron transport around photosystem II by carotenoids are discussed.


Sign in / Sign up

Export Citation Format

Share Document