Methylglyoxal triggers the heat tolerance in maize seedlings by driving AsA-GSH cycle and reactive oxygen species-/methylglyoxal-scavenging system

2019 ◽  
Vol 138 ◽  
pp. 91-99 ◽  
Author(s):  
Yue Wang ◽  
Xin-Yu Ye ◽  
Xue-Mei Qiu ◽  
Zhong-Guang Li
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11963
Author(s):  
Lijuan Yang ◽  
Yufeng Wang ◽  
Kejun Yang

Background Saline-alkali soil is mainly distributed in the northern and coastal areas of China. The Songnen Plain, located in the northeast of China, is a region with a relatively high concentration of saline-alkali soil and is also one of the more at-risk areas in the country. Every year, the increasing spread of saline-alkali soil areas has a serious impact on the growth of agricultural crops. The maize crop is sensitive to saline-alkali stress, which seriously affects its growth and development. Our previous study determined that Klebsiella variicola performs a variety of biological functions, as well as improves the rhizosphere microenvironment and promotes the growth and development of maize seedlings in saline-alkali soil environments. The present study further analyzed the mechanism that enables K. variicola to alleviate saline-alkali stress at the level of the antioxidant system. Methods The accumulation of O2− was observed directly via histochemical staining. The activities of several antioxidant enzymes were determined using the nitro blue tetrazolium and the guaiacol methods. The contents of non-enzymatic antioxidants were determined using the dithionitrobenzoic acid method. Results The contents of the superoxide anion and hydrogen peroxide in leaves and roots of maize seedlings increased under saline-alkali stress conditions. The higher level of reactive oxygen species increased the degree of membrane lipid peroxidation. There were differences in the degree of oxidative damage and performance of the antioxidant defence system in maize seedlings under saline-alkali stress. Following the application of increasing concentrations of K. variicola, the activity of antioxidant enzymes increased by 21.22%–215.46%, and the content of non-enzymatic antioxidants increased as well, the ratios of ASA/DHA and GSH/GSSG in leaves increased by 4.97% and 1.87 times, respectively, and those in roots increased by 3.24% and 1.60 times, respectively. The accumulation of reactive oxygen species was reduced, and the content of H2O2 decreased by 26.07%–46.97%. The content of O2− decreased by 20.18%–37.01%, which alleviated the oxidative damage to maize seedlings caused by saline-alkali stress. Conclusion K. variicola reduced ROS-induced peroxidation to membrane lipids and effectively alleviated the damage caused by saline-alkali stress by increasing the activities of antioxidant enzymes in maize seedlings, thus enhancing their saline-alkali tolerance. A bacterial concentration of 1×108 cfu/mL was optimal in each set of experiments.


2007 ◽  
Vol 31 (5) ◽  
pp. 946-951
Author(s):  
WANG Yi-Bo ◽  
◽  
FENG Hu-Yuan ◽  
QU Ying ◽  
CHENG Jia-Qiang ◽  
...  

2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document