Characterization of cadmium accumulation and phytoextraction in three species of the genus Atriplex (canescens, halimus and nummularia) in the presence or absence of salt

Author(s):  
Houssem Kahli ◽  
Hana Sbartai ◽  
Touria Cohen-Bouhacina ◽  
Jacques Bourguignon
2019 ◽  
Vol 20 (7) ◽  
pp. 1732 ◽  
Author(s):  
Xin-Ke Wang ◽  
Xue Gong ◽  
Fangbin Cao ◽  
Yizhou Wang ◽  
Guoping Zhang ◽  
...  

The identification of gene(s) that are involved in Cd accumulation/tolerance is vital in developing crop cultivars with low Cd accumulation. We developed a doubled haploid (DH) population that was derived from a cross of Suyinmai 2 (Cd-sensitive) × Weisuobuzhi (Cd-tolerant) to conduct quantitative trait loci (QTL) mapping studies. We assessed chlorophyll content, traits that are associated with development, metal concentration, and antioxidative enzyme activity in DH population lines and parents under control and Cd stress conditions. A single QTL, designated as qShCd7H, was identified on chromosome 7H that was linked to shoot Cd concentration; qShCd7H explained 17% of the phenotypic variation. Comparative genomics, map-based cloning, and gene silencing were used in isolation, cloning, and functional characterization of the candidate gene. A novel gene HvPAA1, being related to shoot Cd concentration, was identified from qShCd7H. Sequence comparison indicated that HvPAA1 carried seven domains with an N-glycosylation motif. HvPAA1 is predominantly expressed in shoots. Subcellular localization verified that HvPAA1 is located in plasma membrane. The silencing of HvPAA1 resulted in growth inhibition, greater Cd accumulation, and a significant decrease in Cd tolerance. We conclude HvPAA1 is a novel plasma membrane-localized ATPase that contributes to Cd tolerance and accumulation in barley. The results provide us with new insights that may aid in the screening and development of Cd-tolerant and low-Cd-accumulation crops.


Gene ◽  
2016 ◽  
Vol 576 (2) ◽  
pp. 618-625 ◽  
Author(s):  
Tetsushi Mori ◽  
Koji Iwamoto ◽  
Satoshi Wakaoji ◽  
Hiroya Araie ◽  
Yotaro Kohara ◽  
...  

2019 ◽  
Vol 69 (2) ◽  
pp. 345-351
Author(s):  
Kaori Hirata ◽  
Kyoko Takagi ◽  
Tetsuya Yamada ◽  
Takashi Sayama ◽  
Toyoaki Anai ◽  
...  

2010 ◽  
Vol 51 (5) ◽  
pp. 848-853 ◽  
Author(s):  
Emiko Harada ◽  
Akiko Hokura ◽  
Saori Takada ◽  
Kei’ichi Baba ◽  
Yasuko Terada ◽  
...  

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document