Pathogenicity, mating type distribution and avirulence gene mutation of Magnaporthe oryzae populations in the Wuling Mountain region of China

2021 ◽  
Vol 116 ◽  
pp. 101716
Author(s):  
Xin Xu ◽  
Xianying Tang ◽  
Haojie Han ◽  
Wu Yang ◽  
Xinqiong Liu ◽  
...  
2014 ◽  
Vol 55 (1) ◽  
pp. 108-113 ◽  
Author(s):  
Jahangir Imam ◽  
Shamshad Alam ◽  
Nimai Prasad Mandal ◽  
Dipankar Maiti ◽  
Mukund Variar ◽  
...  

Plant Disease ◽  
1999 ◽  
Vol 83 (10) ◽  
pp. 939-943 ◽  
Author(s):  
Poonsak Mekwatanakarn ◽  
Wichai Kositratana ◽  
Tawatchai Phromraksa ◽  
R. S. Zeigler

Sexual fertility and mating type distribution of Magnaporthe grisea field isolates collected in Thailand were analyzed from sites previously found to harbor diverse populations of the pathogen. Three hundred forty-one single conidium isolates of M. grisea collected from five sites in north, northeast, and central Thailand were evaluated for in vitro sexual fertility and mating type by pairing with strains of known mating type. Most isolates (67%) were infertile when crossed with the hermaphrodite tester strains; but fertile isolates of each mating type that yielded viable ascospores were detected in all sites from the northeastern and northern regions. MAT1-2 predominated over MAT1-1 in bioassay mating type. Male fertility (female sterility) predominated in fertile MAT1-1 (50 to 75%) and MAT1-2 (50 to 85%) isolates from all locations in Thailand; however, hermaphroditic and/or female fertile isolates were also detected in all but one site. Fertility, as determined by perithecia density, was low (<10 perithecia cm-2) for most isolates, although a few produced in excess of 20 perithecia cm-2.


2012 ◽  
Vol 102 (7) ◽  
pp. 674-682 ◽  
Author(s):  
Nguyen Thi Thanh Nga ◽  
Yoshihiro Inoue ◽  
Izumi Chuma ◽  
Gang-Su Hyon ◽  
Kazuma Okada ◽  
...  

Barley cultivars show various patterns of resistance against isolates of Magnaporthe oryzae and M. grisea. Genetic mechanisms of the resistance of five representative barley cultivars were examined using a highly susceptible barley cultivar, ‘Nigrate’, as a common parent of genetic crosses. The resistance of the five cultivars against Setaria, Oryza, Eleusine, and Triticum isolates of M. oryzae was all attributed to a single locus, designated as Rmo2. Nevertheless, the Rmo2 locus in each cultivar was effective against a different range of isolates. Genetic analyses of pathogenicity suggested that each cultivar carries an allele at the Rmo2 locus that recognizes a different range of avirulence genes. One allele, Rmo2.a, corresponded to PWT1, which conditioned the avirulence of Setaria and Oryza isolates on wheat, in a gene-for-gene manner. The other alleles, Rmo2.b, Rmo2.c, and Rmo2.d, corresponded to more than one avirulence gene. On the other hand, the resistance of those cultivars to another species, M. grisea, was conditioned by another locus, designated as Rmo3. These results suggest that Rmo2 is effective against a broad range of blast isolates but is specific to M. oryzae. Molecular mapping revealed that Rmo2 is located on the 7H chromosome.


2020 ◽  
Vol 137 ◽  
pp. 103350 ◽  
Author(s):  
Minette Havenga ◽  
Brenda D. Wingfield ◽  
Michael J. Wingfield ◽  
Francois Roets ◽  
Léanne L. Dreyer ◽  
...  

2016 ◽  
Vol 106 (7) ◽  
pp. 676-683 ◽  
Author(s):  
Yulin Jia ◽  
Erxun Zhou ◽  
Seonghee Lee ◽  
Tracy Bianco

The Pi-ta gene in rice is effective in preventing infections by Magnaporthe oryzae strains that contain the corresponding avirulence gene, AVR-Pita1. Diverse haplotypes of AVR-Pita1 have been identified from isolates of M. oryzae from rice production areas in the United States and worldwide. DNA sequencing and mapping studies have revealed that AVR-Pita1 is highly unstable, while expression analysis and quantitative resistance loci mapping of the Pi-ta locus revealed complex evolutionary mechanisms of Pi-ta-mediated resistance. Among these studies, several Pi-ta transcripts were identified, most of which are probably derived from alternative splicing and exon skipping, which could produce functional resistance proteins that support a new concept of coevolution of Pi-ta and AVR-Pita1. User-friendly DNA markers for Pi-ta have been developed to support marker-assisted selection, and development of new rice varieties with the Pi-ta markers. Genome-wide association studies revealed a link between Pi-ta-mediated resistance and yield components suggesting that rice has evolved a complicated defense mechanism against the blast fungus. In this review, we detail the current understanding of Pi-ta allelic variation, its linkage with rice productivity, AVR-Pita allelic variation, and the coevolution of Pi-ta and AVR-Pita in Oryza species and M. oryzae populations, respectively. We also review the genetic and molecular basis of Pi-ta and AVR-Pita interaction, and its value in marker-assisted selection and engineering resistance.


2008 ◽  
Vol 98 (4) ◽  
pp. 436-442 ◽  
Author(s):  
S.-Y. Park ◽  
M. G. Milgroom ◽  
S. S. Han ◽  
S. Kang ◽  
Y.-H. Lee

A previous study of the diversity and population structure of the rice blast fungus, Magnaporthe oryzae, over a 20-year period in Korea, found novel fingerprint haplotypes each year, and the authors hypothesized that populations might experience annual bottlenecks. Based on this model, we predicted that M. oryzae populations would have little or no genetic differentiation among geographic regions because rice blast is commonly found throughout Korea each year and M. oryzae would have to disperse from small populations surviving annually between rice crops. To test this hypothesis, we sampled M. oryzae from rice fields in eight provinces in Korea in a single year (1999). In four provinces, we sampled from a set of rice cultivars commonly grown in commercial fields (group I); because of low disease incidence in four other provinces, we could not sample from commercial fields and instead sampled from scouting plots of different cultivars set up for detecting new pathotypes of M. oryzae (group II). All isolates were genotyped with DNA fingerprint probes MGR586 and MAGGY, a telomere-linked gene family member TLH1, the PWL2 host specificity gene and mating type. Fingerprint haplotypes clustered into two distinct lineages corresponding to the two sets of cultivars (groups I and II), with haplotype similarities of 71% between lineages and >76% within lineages. Isolates from the same cultivar within group I were genetically differentiated among locations, and isolates within the same location were differentiated among cultivars. Differentiation for TLH1 and PWL2 was significant (P < 0.03), but not as strong as for fingerprint markers. Similar analyses were not possible among group II isolates because too few isolates were available from any one cultivar. All isolates were in the same mating type, Mat1-1, ruling out sexual reproduction as a source of novel haplotypes. When the 1999 samples were compared with the historical samples from the previous study, haplotypes of group I formed a separate cluster, while those of group II clustered with haplotypes from the historical sample. Altogether, geographic subdivision, monomorphism of mating type, and correlation of haplotypes to sets of cultivars are not consistent with the hypothesis of repeated turnover of haplotypes. Instead, the previous correlations of haplotypes to year might have been caused by inadequate sampling of haplotypes each year, highlighting the need for studies of population genetics to be conducted with systematic samples collected to address specific questions.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Tonghui Li ◽  
Jianqiang Wen ◽  
Yaling Zhang ◽  
James Correll ◽  
Ling Wang ◽  
...  

2005 ◽  
Vol 160 (4) ◽  
pp. 285-290 ◽  
Author(s):  
V. F. Consolo ◽  
C. A. Cordo ◽  
G. L. Salerno

Sign in / Sign up

Export Citation Format

Share Document